A screening of Life Cycle Assessment for the evaluation of the damage arising from the production of 1 kg of recycled Polyethylene Terephthalate (RPET) fibre-based panel for building heat insulation was carried out according to the ISO 14040:2006 and 14044:2006. All data used were collected on site based on observations during site visits, review of documents and interviews with technical personnel and management. These data were processed by using SimaPro 7.3.3, accessing the Ecoinvent v.2.2 database and using the Impact 2002. + method. The study showed damage to be equal to 0.000299 points mostly due to the: 1) PET thermo-bonding fibre supply from China by means of a freight-equipped intercontinental aircraft; 2) production of bottle-grade granulate PET; 3) medium voltage electricity consumption during the manufacturing of RPET fibre panel. It was also highlighted that there were environmental benefits due to recycling through mainly avoiding significant emissions and reduced resource consumption. An improvement assessment was carried out to find solutions aimed at reducing the damage coming from the most impacting phases. Furthermore, the environmental impacts due to the production of the analysed RPET fibre-based panel were compared to other materials with the same insulating function, such as polystyrene foam, rock wool and cork slab. Finally, the environmental benefits of the recycling of PET bottles for flake production were highlighted compared to other treatment scenarios such as landfill and municipal incineration. © 2014 Elsevier B.V.
Recycled-PET fibre based panels for building thermal insulation: Environmental impact and improvement potential assessment for a greener production
Ingrao C.
;Lo Giudice A.;Tricase C.;
2014-01-01
Abstract
A screening of Life Cycle Assessment for the evaluation of the damage arising from the production of 1 kg of recycled Polyethylene Terephthalate (RPET) fibre-based panel for building heat insulation was carried out according to the ISO 14040:2006 and 14044:2006. All data used were collected on site based on observations during site visits, review of documents and interviews with technical personnel and management. These data were processed by using SimaPro 7.3.3, accessing the Ecoinvent v.2.2 database and using the Impact 2002. + method. The study showed damage to be equal to 0.000299 points mostly due to the: 1) PET thermo-bonding fibre supply from China by means of a freight-equipped intercontinental aircraft; 2) production of bottle-grade granulate PET; 3) medium voltage electricity consumption during the manufacturing of RPET fibre panel. It was also highlighted that there were environmental benefits due to recycling through mainly avoiding significant emissions and reduced resource consumption. An improvement assessment was carried out to find solutions aimed at reducing the damage coming from the most impacting phases. Furthermore, the environmental impacts due to the production of the analysed RPET fibre-based panel were compared to other materials with the same insulating function, such as polystyrene foam, rock wool and cork slab. Finally, the environmental benefits of the recycling of PET bottles for flake production were highlighted compared to other treatment scenarios such as landfill and municipal incineration. © 2014 Elsevier B.V.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.