In the last decade, a large amount of neuroimaging datasets became publicly available on different archives, so there is an increasing need to manage heterogeneous data, aggregate and process them by means of large-scale computational resources. ReCaS datacenter offers the most important features to manage big datasets, process them, store results in efficient manner and make all the pipeline steps available for reproducible data analysis. Here, we present a scientific computing environment in ReCaS datacenter to deal with common problems of large-scale neuroimaging processing. We show the general architecture of the datacenter and the main steps to perform multidimensional neuroimaging processing.
Multidimensional neuroimaging processing in ReCaS datacenter
Eufemia Lella;Nicola Amoroso;Domenico Diacono;Alfonso Monaco;Roberto Bellotti;Sabina Tangaro
2019-01-01
Abstract
In the last decade, a large amount of neuroimaging datasets became publicly available on different archives, so there is an increasing need to manage heterogeneous data, aggregate and process them by means of large-scale computational resources. ReCaS datacenter offers the most important features to manage big datasets, process them, store results in efficient manner and make all the pipeline steps available for reproducible data analysis. Here, we present a scientific computing environment in ReCaS datacenter to deal with common problems of large-scale neuroimaging processing. We show the general architecture of the datacenter and the main steps to perform multidimensional neuroimaging processing.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.