Cognitive impairment has mainly two, non mutually exclusive, etiologies: structural or connectivity lesions. Analogously, we present here a methodology aimed at investigating magnetic resonance imaging (MRI) scans of subject after a traumatic brain injury (TBI) to detect the presence of these heterogeneous lesions and access the information content within. In particular, we use (i) complex network topological features to capture the effect of disease on connectivity and (ii) morphological brain measurements to describe anomalous patterns from a structural perspective. This integrated base of knowledge is then used to emphasize differences arising within a cohort including normal controls and patients labeled as category-I and category-II according to their outcome after TBI. Results suggest that topological measurements provide a suitable measurement to detect category-I subjects, while structural features are effective to distinguish controls from category-II subjects.

Mild traumatic brain injury outcome prediction based on both graph and K-nn methods

R. Bellotti;C. Guaragnella;N. Amoroso;A. Tateo;S. Tangaro
2016-01-01

Abstract

Cognitive impairment has mainly two, non mutually exclusive, etiologies: structural or connectivity lesions. Analogously, we present here a methodology aimed at investigating magnetic resonance imaging (MRI) scans of subject after a traumatic brain injury (TBI) to detect the presence of these heterogeneous lesions and access the information content within. In particular, we use (i) complex network topological features to capture the effect of disease on connectivity and (ii) morphological brain measurements to describe anomalous patterns from a structural perspective. This integrated base of knowledge is then used to emphasize differences arising within a cohort including normal controls and patients labeled as category-I and category-II according to their outcome after TBI. Results suggest that topological measurements provide a suitable measurement to detect category-I subjects, while structural features are effective to distinguish controls from category-II subjects.
2016
978-3-319-55523-2
978-3-319-55524-9
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/473402
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 0
social impact