We propose a method to perform regression on partially labeled data, which is based on SSFCM (Semi-Supervised Fuzzy C-Means), an algorithm for semi-supervised classification based on fuzzy clustering. The proposed method, called SSFCM-R, precedes the application of SSFCM with a relabeling module based on target discretization. After the application of SSFCM, regression is carried out according to one out of two possible schemes: (i) the output corresponds to the label of the closest cluster; (ii) the output is a linear combination of the cluster labels weighted by the membership degree of the input. Some experiments on synthetic data are reported to compare both approaches.

Semi-Supervised Fuzzy C-Means for Regression

Casalino, Gabriella;Castellano, Giovanna;Mencar, Corrado
2023-01-01

Abstract

We propose a method to perform regression on partially labeled data, which is based on SSFCM (Semi-Supervised Fuzzy C-Means), an algorithm for semi-supervised classification based on fuzzy clustering. The proposed method, called SSFCM-R, precedes the application of SSFCM with a relabeling module based on target discretization. After the application of SSFCM, regression is carried out according to one out of two possible schemes: (i) the output corresponds to the label of the closest cluster; (ii) the output is a linear combination of the cluster labels weighted by the membership degree of the input. Some experiments on synthetic data are reported to compare both approaches.
2023
978-989-758-674-3
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/453202
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact