Let $\m = \mo \times \R$ be a Lorentzian manifold equipped with a static metric $\g_L = \langle\alpha(x)\cdot,\cdot\rangle - \beta(x) dt^2$ where $\beta$ has a subquadratic growth. Then, fixed $P_0$, $P_1$ submanifolds of $\mo$, a suitable version of the Fermat principle and the classical Ljusternik-Schnirelman theory allow to prove that the existence of normal lightlike geodesics joining $P_0 \times \{0\}$ to $P_1 \times \R$ is influenced by the topology of $\mo$, $P_0$ and $P_1$.

Normal geodesics in Space-Times

CANDELA, Anna Maria
2003-01-01

Abstract

Let $\m = \mo \times \R$ be a Lorentzian manifold equipped with a static metric $\g_L = \langle\alpha(x)\cdot,\cdot\rangle - \beta(x) dt^2$ where $\beta$ has a subquadratic growth. Then, fixed $P_0$, $P_1$ submanifolds of $\mo$, a suitable version of the Fermat principle and the classical Ljusternik-Schnirelman theory allow to prove that the existence of normal lightlike geodesics joining $P_0 \times \{0\}$ to $P_1 \times \R$ is influenced by the topology of $\mo$, $P_0$ and $P_1$.
2003
84-923818-9-2
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/45246
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact