Generative AI, mainly through Diffusion Models, has revolutionized art creation, blurring the distinction between human and AI-generated art. This study introduces a novel dataset comprising human-made and AI-generated art and employs Deep Learning models (VGG-19, ResNet-50, ViT) to distinguish between them. We also use eXplainable AI techniques to derive insights. Our results highlight the potential of AI to detect machine-generated content, with implications for art authentication.

Identifying AI-Generated Art with Deep Learning

Tommaso Bianco;Giovanna Castellano;Raffaele Scaringi
;
Gennaro Vessio
2023-01-01

Abstract

Generative AI, mainly through Diffusion Models, has revolutionized art creation, blurring the distinction between human and AI-generated art. This study introduces a novel dataset comprising human-made and AI-generated art and employs Deep Learning models (VGG-19, ResNet-50, ViT) to distinguish between them. We also use eXplainable AI techniques to derive insights. Our results highlight the potential of AI to detect machine-generated content, with implications for art authentication.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/451380
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact