Non-invasive remote sensing using UAVs can be used in precision agriculture to observe crops in visible and non-visible spectra. This paper investigates the effectiveness of state-of-the-art knowledge distillation techniques for mapping weeds with drones, an essential component of precision agriculture that employs remote sensing to monitor crops and weeds. The study introduces a lightweight Vision Transformer-based model that achieves optimal weed mapping capabilities while maintaining minimal computation time. The research shows that the student model effectively learns from the teacher model using the WeedMap dataset, achieving accurate results suitable for mobile platforms such as drones, with only 0.5 GMacs compared to 42.5 GMacs of the teacher model. The trained models obtained an F1 score of 0.863 and 0.631 on two data subsets, with a performance improvement of 2 and 7 points, respectively, over the undistilled model. The study results suggest that developing efficient computer vision algorithms on drones can significantly improve agricultural management practices, leading to greater profitability and environmental sustainability.

Applying Knowledge Distillation to Improve Weed Mapping With Drones

Castellano, Giovanna;Marinis, Pasquale De
;
Vessio, Gennaro
2023-01-01

Abstract

Non-invasive remote sensing using UAVs can be used in precision agriculture to observe crops in visible and non-visible spectra. This paper investigates the effectiveness of state-of-the-art knowledge distillation techniques for mapping weeds with drones, an essential component of precision agriculture that employs remote sensing to monitor crops and weeds. The study introduces a lightweight Vision Transformer-based model that achieves optimal weed mapping capabilities while maintaining minimal computation time. The research shows that the student model effectively learns from the teacher model using the WeedMap dataset, achieving accurate results suitable for mobile platforms such as drones, with only 0.5 GMacs compared to 42.5 GMacs of the teacher model. The trained models obtained an F1 score of 0.863 and 0.631 on two data subsets, with a performance improvement of 2 and 7 points, respectively, over the undistilled model. The study results suggest that developing efficient computer vision algorithms on drones can significantly improve agricultural management practices, leading to greater profitability and environmental sustainability.
2023
978-83-967447-8-4
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/450340
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact