We present novel methods to perform plenoptic imaging at the diffraction limit by measuring intensity correlations of light. The first method is oriented towards plenoptic microscopy, a promising technique which allows refocusing and depth-of-field enhancement, in post-processing, as well as scanning free 3D imaging. To overcome the limitations of standard plenoptic microscopes, we propose an adaptation of Correlation Plenoptic Imaging (CPI) to the working conditions of microscopy. We consider and compare different architectures of CPI microscopes, and discuss the improved robustness with respect to previous protocols against turbulence around the sample. The second method is based on measuring correlations between the images of two reference planes, arbitrarily chosen within the tridimensional scene of interest, providing an unprecedented combination of image resolution and depth of field. The results lead the way towards the realization of compact designs for CPI devices.

Plenoptic microscopy and photography from intensity correlations

Pepe F. V.;Di Lena F.;Garuccio A.;Giannella D.;Scagliola A.;Scattarella F.;D'Angelo M.
2021-01-01

Abstract

We present novel methods to perform plenoptic imaging at the diffraction limit by measuring intensity correlations of light. The first method is oriented towards plenoptic microscopy, a promising technique which allows refocusing and depth-of-field enhancement, in post-processing, as well as scanning free 3D imaging. To overcome the limitations of standard plenoptic microscopes, we propose an adaptation of Correlation Plenoptic Imaging (CPI) to the working conditions of microscopy. We consider and compare different architectures of CPI microscopes, and discuss the improved robustness with respect to previous protocols against turbulence around the sample. The second method is based on measuring correlations between the images of two reference planes, arbitrarily chosen within the tridimensional scene of interest, providing an unprecedented combination of image resolution and depth of field. The results lead the way towards the realization of compact designs for CPI devices.
2021
9781510645080
9781510645097
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/429723
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact