We study admissible boundary conditions for a charged quantum particle in a two-dimensional region subjected to an external magnetic field, i.e. a quantum magnetic billiard. After reviewing some physically interesting classes of admissible boundary conditions (magnetic Robin and chiral boundary conditions), we turn our attention to the role of gauge transformations in a magnetic billiard: in particular, we introduce gauge covariant boundary conditions, and find a sufficient condition for gauge covariance which is satisfied by all the aforementioned examples. (c) 2022 Elsevier Inc. All rights reserved.

Quantum magnetic billiards: Boundary conditions and gauge transformations

Giuliano Angelone;Paolo Facchi;Davide Lonigro
2022-01-01

Abstract

We study admissible boundary conditions for a charged quantum particle in a two-dimensional region subjected to an external magnetic field, i.e. a quantum magnetic billiard. After reviewing some physically interesting classes of admissible boundary conditions (magnetic Robin and chiral boundary conditions), we turn our attention to the role of gauge transformations in a magnetic billiard: in particular, we introduce gauge covariant boundary conditions, and find a sufficient condition for gauge covariance which is satisfied by all the aforementioned examples. (c) 2022 Elsevier Inc. All rights reserved.
File in questo prodotto:
File Dimensione Formato  
201 magbill.pdf

non disponibili

Tipologia: Documento in Versione Editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 612.11 kB
Formato Adobe PDF
612.11 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
2109.10275v2.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 428.62 kB
Formato Adobe PDF
428.62 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/423874
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact