This study demonstrates a simple and reproducible approach to synthesize green core-shell copper sub-microparticles stabilized by poly(n-vinyl)pyrrolidone (PVP). Cu@PVP colloids were here prepared using copper sulfate pentahydrate as precursor and glucose as reducing agent. The presence of PVP in the synthetic medium eliminates the need for an inert atmosphere during the process, thus simplifying the whole method. Both the morphology and the spectroscopic properties of Cu@PVP colloids were investigated by transmission electron microscopy, and infrared, UV-Vis and X-ray photoelectron spectroscopies. Size distributions and average shell thickness were obtained by statistical analysis on TEM micrographs, and spectroscopies demonstrated the formation of a PVP layer around the copper core. The produced colloids were employed in composite thin films for potential antimicrobial application, in association with a highly-recyclable polymer: polycarbonate (4,4’-(1-methylethylidene)bis(phenol)).

Green Synthesis and Analytical Characterization of Core-Shell Copper Sub-Microparticles

Sportelli M. C.
;
Picca R. A.;Izzi M.;Cioffi N.
2023-01-01

Abstract

This study demonstrates a simple and reproducible approach to synthesize green core-shell copper sub-microparticles stabilized by poly(n-vinyl)pyrrolidone (PVP). Cu@PVP colloids were here prepared using copper sulfate pentahydrate as precursor and glucose as reducing agent. The presence of PVP in the synthetic medium eliminates the need for an inert atmosphere during the process, thus simplifying the whole method. Both the morphology and the spectroscopic properties of Cu@PVP colloids were investigated by transmission electron microscopy, and infrared, UV-Vis and X-ray photoelectron spectroscopies. Size distributions and average shell thickness were obtained by statistical analysis on TEM micrographs, and spectroscopies demonstrated the formation of a PVP layer around the copper core. The produced colloids were employed in composite thin films for potential antimicrobial application, in association with a highly-recyclable polymer: polycarbonate (4,4’-(1-methylethylidene)bis(phenol)).
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/421757
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 6
social impact