: After two decades of research in the field of nanomedicine, nanoscale delivery systems for biologicals are becoming clinically relevant tools. Microfluidic-based fabrication processes are replacing conventional techniques based on precipitation, emulsion, and homogenization. Here, the focus is on solid lipid nanoparticles (SLNs) for the encapsulation and delivery of lysozyme (LZ) as a model biologic. A thorough analysis was conducted to compare conventional versus microfluidic-based production techniques, using a 3D-printed device. The efficiency of the microfluidic technique in producing LZ-loaded SLNs (LZ SLNs) was demonstrated: LZ SLNs were found to have a lower size (158.05 ± 4.86 nm vs 180.21 ± 7.46 nm) and higher encapsulation efficacy (70.15 ± 1.65 % vs 53.58 ± 1.13 %) as compared to particles obtained with conventional methods. Cryo-EM studies highlighted a peculiar turtle-like structure on the surface of LZ SLNs. In vitro studies demonstrated that LZ SLNs were suitable to achieve a sustained release over time (7 days). Enzymatic activity of LZ entrapped into SLNs was challenged on Micrococcus lysodeikticus cultures, confirming the stability and potency of the biologic. This systematic analysis demonstrates that microfluidic production of SLNs can be efficiently used for encapsulation and delivery of complex biological molecules.

Microfluidic assembly of "Turtle-Like" shaped solid lipid nanoparticles for lysozyme delivery

Sommonte, Federica;Arduino, Ilaria;Iacobazzi, Rosa Maria;Decuzzi, Paolo;Lopedota, Angela Assunta;Denora, Nunzio
2023-01-01

Abstract

: After two decades of research in the field of nanomedicine, nanoscale delivery systems for biologicals are becoming clinically relevant tools. Microfluidic-based fabrication processes are replacing conventional techniques based on precipitation, emulsion, and homogenization. Here, the focus is on solid lipid nanoparticles (SLNs) for the encapsulation and delivery of lysozyme (LZ) as a model biologic. A thorough analysis was conducted to compare conventional versus microfluidic-based production techniques, using a 3D-printed device. The efficiency of the microfluidic technique in producing LZ-loaded SLNs (LZ SLNs) was demonstrated: LZ SLNs were found to have a lower size (158.05 ± 4.86 nm vs 180.21 ± 7.46 nm) and higher encapsulation efficacy (70.15 ± 1.65 % vs 53.58 ± 1.13 %) as compared to particles obtained with conventional methods. Cryo-EM studies highlighted a peculiar turtle-like structure on the surface of LZ SLNs. In vitro studies demonstrated that LZ SLNs were suitable to achieve a sustained release over time (7 days). Enzymatic activity of LZ entrapped into SLNs was challenged on Micrococcus lysodeikticus cultures, confirming the stability and potency of the biologic. This systematic analysis demonstrates that microfluidic production of SLNs can be efficiently used for encapsulation and delivery of complex biological molecules.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/418332
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 12
  • ???jsp.display-item.citation.isi??? ND
social impact