Traumatic brain injury (TBI) is a leading cause of disability globally. Many patients develop post-traumatic epilepsy, or recurrent seizures following TBI. In recent years, significant efforts have been made to identify biomarkers of epileptogenesis that may assist in preventing seizure occurrence by identifying high-risk patients. We present a novel method of assessing seizure susceptibility using data from 49 patients enrolled in the Epilepsy Bioinformatics Study for Antiepileptogenic Therapy (EpiBioS4Rx). We employ a machine learning paradigm that utilizes a Random Forest classifier trained with resting-state functional magnetic resonance imaging (fMRI) data to predict seizure outcomes. Following 100 rounds of stratified cross-validation with 70% of resting state fMRI scans as the training set and 30% as the testing set, our model was found to assess seizure outcome in the testing set with 69% accuracy. To validate the method, we compared our results with classification by Support Vector Machines and Neural Network classifiers.

A MACHINE LEARNING MODEL TO PREDICT SEIZURE SUSCEPTIBILITY FROM RESTING-STATE FMRI CONNECTIVITY

La Rocca, Marianna;
2019-01-01

Abstract

Traumatic brain injury (TBI) is a leading cause of disability globally. Many patients develop post-traumatic epilepsy, or recurrent seizures following TBI. In recent years, significant efforts have been made to identify biomarkers of epileptogenesis that may assist in preventing seizure occurrence by identifying high-risk patients. We present a novel method of assessing seizure susceptibility using data from 49 patients enrolled in the Epilepsy Bioinformatics Study for Antiepileptogenic Therapy (EpiBioS4Rx). We employ a machine learning paradigm that utilizes a Random Forest classifier trained with resting-state functional magnetic resonance imaging (fMRI) data to predict seizure outcomes. Following 100 rounds of stratified cross-validation with 70% of resting state fMRI scans as the training set and 30% as the testing set, our model was found to assess seizure outcome in the testing set with 69% accuracy. To validate the method, we compared our results with classification by Support Vector Machines and Neural Network classifiers.
2019
978-1-5108-8388-8
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/418196
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 10
social impact