In this paper, we prove the existence of nontrivial weak bounded solutions of the quasilinear modified Schrödinger problem \[ \left\{ \begin{array}{ll} -{\rm div}(g^2(u) \nabla u) + g(u) g^{\prime}(u) |\nabla u|^2 + V(x) u = f(x, u) &\hbox{in $\R^3$,}\\ u > 0 &\hbox{in $\R^3$,} \end{array}\right. \] where $V:\R^3\to\R$, $f:\R^3\times\R\to\R$ are ``good'' functions and $g:\R\to\R$ is such that $g^2(u)= 1+\frac{[(l(u^2))^{\prime}]^2}{2}$ for a given $l\in\mathcal{C}^2(\R)$. By means of variational methods and an approximation argument, here we obtain an existence result for the superfluid film equation in Plasma Physics and for the equation which models the self-channelling of a high-power ultrashort laser, which derive from our model problem by taking $l(s)=s$, respectively $l(s)=\sqrt{1+s}$, in the previous definition of $g^2(u)$.

Soliton solutions for quasilinear modified Schrödinger equations in applied sciences

Candela, Anna Maria
;
Sportelli, Caterina
2022-01-01

Abstract

In this paper, we prove the existence of nontrivial weak bounded solutions of the quasilinear modified Schrödinger problem \[ \left\{ \begin{array}{ll} -{\rm div}(g^2(u) \nabla u) + g(u) g^{\prime}(u) |\nabla u|^2 + V(x) u = f(x, u) &\hbox{in $\R^3$,}\\ u > 0 &\hbox{in $\R^3$,} \end{array}\right. \] where $V:\R^3\to\R$, $f:\R^3\times\R\to\R$ are ``good'' functions and $g:\R\to\R$ is such that $g^2(u)= 1+\frac{[(l(u^2))^{\prime}]^2}{2}$ for a given $l\in\mathcal{C}^2(\R)$. By means of variational methods and an approximation argument, here we obtain an existence result for the superfluid film equation in Plasma Physics and for the equation which models the self-channelling of a high-power ultrashort laser, which derive from our model problem by taking $l(s)=s$, respectively $l(s)=\sqrt{1+s}$, in the previous definition of $g^2(u)$.
File in questo prodotto:
File Dimensione Formato  
[86]_10.3934_dcdss.2022121_CandelaSportelli-Reprint.pdf

non disponibili

Tipologia: Documento in Versione Editoriale
Licenza: Copyright dell'editore
Dimensione 376.12 kB
Formato Adobe PDF
376.12 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
[86]_AMCandela-CSportelli_post-print_VQR.pdf

accesso aperto

Descrizione: Articolo in post-print
Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 3.63 MB
Formato Adobe PDF
3.63 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/412390
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact