In this paper, we prove the existence of nontrivial weak bounded solutions of the quasilinear modified Schrödinger problem \[ \left\{ \begin{array}{ll} -{\rm div}(g^2(u) \nabla u) + g(u) g^{\prime}(u) |\nabla u|^2 + V(x) u = f(x, u) &\hbox{in $\R^3$,}\\ u > 0 &\hbox{in $\R^3$,} \end{array}\right. \] where $V:\R^3\to\R$, $f:\R^3\times\R\to\R$ are ``good'' functions and $g:\R\to\R$ is such that $g^2(u)= 1+\frac{[(l(u^2))^{\prime}]^2}{2}$ for a given $l\in\mathcal{C}^2(\R)$. By means of variational methods and an approximation argument, here we obtain an existence result for the superfluid film equation in Plasma Physics and for the equation which models the self-channelling of a high-power ultrashort laser, which derive from our model problem by taking $l(s)=s$, respectively $l(s)=\sqrt{1+s}$, in the previous definition of $g^2(u)$.
Soliton solutions for quasilinear modified Schrödinger equations in applied sciences
Candela, Anna Maria
;Sportelli, Caterina
2022-01-01
Abstract
In this paper, we prove the existence of nontrivial weak bounded solutions of the quasilinear modified Schrödinger problem \[ \left\{ \begin{array}{ll} -{\rm div}(g^2(u) \nabla u) + g(u) g^{\prime}(u) |\nabla u|^2 + V(x) u = f(x, u) &\hbox{in $\R^3$,}\\ u > 0 &\hbox{in $\R^3$,} \end{array}\right. \] where $V:\R^3\to\R$, $f:\R^3\times\R\to\R$ are ``good'' functions and $g:\R\to\R$ is such that $g^2(u)= 1+\frac{[(l(u^2))^{\prime}]^2}{2}$ for a given $l\in\mathcal{C}^2(\R)$. By means of variational methods and an approximation argument, here we obtain an existence result for the superfluid film equation in Plasma Physics and for the equation which models the self-channelling of a high-power ultrashort laser, which derive from our model problem by taking $l(s)=s$, respectively $l(s)=\sqrt{1+s}$, in the previous definition of $g^2(u)$.File | Dimensione | Formato | |
---|---|---|---|
[86]_10.3934_dcdss.2022121_CandelaSportelli-Reprint.pdf
non disponibili
Tipologia:
Documento in Versione Editoriale
Licenza:
Copyright dell'editore
Dimensione
376.12 kB
Formato
Adobe PDF
|
376.12 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
[86]_AMCandela-CSportelli_post-print_VQR.pdf
accesso aperto
Descrizione: Articolo in post-print
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
3.63 MB
Formato
Adobe PDF
|
3.63 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.