This is the post-print of our paper published in
Discrete Contin. Dyn. Syst. Ser. S 15 (12) (2022), 3557-3570.
DOI:10.3934/dcdss.2022121

SOLITON SOLUTIONS FOR QUASILINEAR MODIFIED
SCHRODINGER EQUATIONS IN APPLIED SCIENCES

ANNA MARIA CANDELA* AND CATERINA SPORTELLI

Dipartimento di Matematica, Universita degli Studi di Bari Aldo Moro
Via E. Orabona 4, 70125 Bari, Italy

(Communicated by the associate editor name)

To Rosella Mininni, a beloved friend

ABSTRACT. In this paper, we prove the existence of nontrivial weak bounded
solutions of the quasilinear modified Schrédinger problem
—div(g®(u)Vu) + g(u)g' (w)|Vul* + V(z)u = f(z,u) inR?,
u >0 in R3,
where V : R3 —» R, f: R3 xR — R are “good” functions and g : R — R is such
21712
that g2(u) = 1+ % for a given | € C2(R).

By means of variational methods and an approximation argument, here we
obtain an existence result for the superfluid film equation in Plasma Physics
and for the equation which models the self-channelling of a high—power ultra-
short laser, which derive from our model problem by taking I(s) = s, respec-
tively I(s) = v/1+ s, in the previous definition of g2 (u).

1. INTRODUCTION AND MOTIVATIONS

In this paper, we deal with the existence of positive solutions, often named soliton
solutions, for the quasilinear modified Schrodinger equation

— div(g*(u)Vu) + g(u)g'(w)|Vul® + V(z)u = f(z,u) R (1.1)

where potential V : R® — R is a suitable measurable function and g : R — R,
f:R?® xR — R are given maps.

The noteworthiness of problem (1.1) is based on its connection to the study of
solitary wave solutions for the quasilinear Schrodinger equation

10z = —Az — AI(|2)) (|22 + W(2)z — k(x, |2])z, withz € R3¢ >0, (1.2)

where the solution we look for z(z,t) is complex in R® x Ry while W : R® — R,
kE:R3>xR, - Rand!: R, — R are real functions.
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2 A.M. CANDELA AND C. SPORTELLI

In fact, by using the ansatz z(z,t) = e~ *Plu(x) in (1.2) with E € R, we have that
u : R® — R is an unknown real function which solves the stationary Schrodinger
problem

u>0 in R3 (1.3)

with the new potential V(z) = W(z) — F and f(x,u) = k(z, u)u.

The relation between the equation asserted in (1.1) and that one in (1.3) is
exhibited through the particular choice of function g(u). In fact, if I(s) is a C? map
on Ry, having

{ —Au— AW (w)u+V(z)u = f(z,u) inR3

g*(u) = 1+ w = 1+ 2u*[l'(u?)]?, (1.4)
we obtain
g(wg'(w) = 2ul'(W*)[l'(u?) + 21" (u?)] (1.5)
and

div(g*(w)Vu) = 2g(u)g'(u)|Vul® + ¢*(u) Au,
then, via direct computations, we infer that
Au+ A1) (u?)u = Au + g(u)g' (u)|Vul* + 201 (u?)]? Au
= div(g*(u)Vu) = g(u)g' (u)|Vul?
so that the equation in (1.3) boils down exactly to equation (1.1).

Thus, the importance of problem (1.1) rests upon the wide interest in Schrodinger
equation (1.2) which turns up in several fields such as, for example, Plasma Physics
and Fluid Mechanics (see [15]), Mechanics (see [14]), Condensed Matter Theory
(see [19]). More precisely, it has been derived as model equation of various physical
phenomena according to the special form given to the nonlinear term I(s).

Throughout this paper, we will focus on the equations which are originated by
choosing I(s) = s and I(s) = V1 + s.

In particular, taking I(s) = s in (1.3), definition (1.4) gives

g*(u) =1+ 2u? (1.6)

and (1.1) reduces to the superfluid film equation in Plasma Physics so that we are
interested in solving the model problem

—Au—uA@?) + V(@)u = f(z,u) inR3 (17)
u >0 in R3 '
with a nonlinear function f(z,u) at the place of k(x,u)u (see [15]).
On the other hand, if I(s) = /1 + s from (1.4) we have that
2
2u) =14 = 1.
g (’LL) + 2(1 +“2) ( 8)
so problem (1.1) turns into
Ay — —u V/ 2 Nu = f(z o R3
A'LL 2V 14u? A( 1 + u ) + V(.L)U f('/LJu) ln R3 (1'9)
u>0 in R

which describess the self-channeling of a high—power ultrashort laser in matter (see
[16]).

As far as we know, the first existence results for equation (1.7), via a variational
approach, are gained through a constrained minimization argument (see [18, 20]).
Later on, a further general existence result was derived in [17] by using a suitable
change of variable which reduces the quasilinear equation (1.7) to a semilinear one
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so that a Orlicz space framework can be used and the existence of positive solutions
follows from the Mountain Pass Theorem. The same approach was employed in
[11, 13], but a most common setting involving the usual Sobolev space H!(RY)
was exploited. More precisely, since the action functional associated to (1.7) is not
well defined in H'(RY), taking h(t) odd extension of the solution of the ordinary
differential equation

1
W(t) = ——————  if t>0,

NiE=TE0]
the existence of a spherically symmetric solution is established by means of the
change of variable v = h™!(u) and of classical results provided by Berestycki and
Lions in [3].

On the other hand, very few results are known about equation (1.9) (see, e.g.,
[12]) but, more recently, Y. Schen and Y. Wang in [21] choose to introduce a unified
method for studing both (1.7) and (1.9) looking for standing wave solutions for
(1.1) so that they have the existence of positive solutions for the model problems,
too. As they point out, variational methods cannot apply directly so, by taking
advance of the special form of (1.1), in the natural associated functional they make
the change of variable

v=Gu) = /0“ g(t)dt

and then investigate the existence of weak solutions of the corresponding problem
by means of the Mountain Pass Theorem. Clearly, with such an approach the
hypotheses on the nonlinear term f(z,u) are affected by g(u) (for more details, see
Remark 1.3).

In this paper, we deal with (1.1), too, but we use a completely different strategy.
In fact, we consider (1.1) as a model problem of the quasilinear modified Schrédinger
equation

—diV(A(x7u)|Vu|p_2Vu)+%Au(x,u)|Vu|p+V(:r)\u|p_2u = f(z,u) in RY (1.10)

with p > 1 and A : RY x R — R such that A,(z,u) = 22 (z,u), which has been
studied in [7, 10].

Here, it has to be N = 3, p = 2, A(z,u) = ¢g*(u) as in (1.4) and, as in [2, 10],
potential V : R? — R satisfies the following conditions:

(V1) V(z) is a measurable function such that ess Hi{{lalf V(z) > 0;
FaS
1

Vs lim —— dy = 0;
(V2) |zl =+00 ) B, () V (¥) Y ’

(V3) for any p > 0, a constant C, > 0 exists such that eslsliup V(z) < C,;
z|<g

where Bj(x) is the unit ball in R?® with center z.
Morcover, we suppose that the nonlinear term f : R3 x R — R is such that:
(f) f(z,u) is a Carathéodory function with f(z,0) = 0 for a.e. = € R3;
(fi7) ai,as >0 and q > 2 exist such that

If(z,u)| < aru+ aou?™"  ae. in R®, for all u > 0;

T, U _ 1 . . .
(fH) lim (@) =a < — uniformly a.e. with respect to x € R
u—0+ U TS
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(f) p > 2 exists such that
0 < pF(z,u) < f(x,u)u ae. inR* forall u > 0;

where 79 > 0 is a constant coming from a suitable embedding theorem (i.e., so that
(3.4) holds), and

F:(r,u) eR*xR ~ / f(z, t)dt € R.
0

In Section 4 we will state existence results for problem (1.1) (see Theorems 4.1
and 4.4), which allow us to state the following theorems for the model problems

(1.7) and (1.9).

Theorem 1.1. Assume that potential V(x) satisfies assumptions (V1)—(V3), while
the nonlinear term f(z,u) is such that conditions (fi)~(fi) are verified.
Then, if

qg<6 and w>4 (1.11)

with q as in (f;7) and p as in (f;), problem (1.7) admits at least one weak bounded
solution.

Theorem 1.2. Assume that potential V(x) satisfies assumptions (V1)—(V3), while
the nonlinear term f(z,u) is such that conditions (fi)~(fi) are verified.
Then, if (1.11) holds, problem (1.9) admits at least one weak bounded solution.

Remark 1.3. In [21] potential V(z) is required to be continuous on R®, with
V(x) > Vo > 0 for all z € R and so that

‘ \hHi V(z) =V(co) and V(z) < V(o) for all z € R3.

T|—+0oC
Hence, (V7) and (V3) are essentially verified, but hypothesis (V) cannot hold.
On the other hand, here the hypotheses on f(xz,u), namely (fy)-(f;), are not
affected by g(u) or, more precisely, any particular form given to /() in (1.4), hence
also condition (1.11) does not change. Such independence is a great improvement
when dealing with general settings but it is too rigid when working with both the
special problems (1.7) and (1.9). In fact, as pointed out in [21], differently from
Theorem 1.1, respectively Theorem 1.2, if (1.6) holds then it can be ¢ < 12 (see
[21, Remark 1.4]) while (1.8) has a solution even when the weaker estimate > /6
holds (see [21, Corollary 1.5]).

Our paper is organized as follows: in Section 2 we outline the main abstract tools
required for our variational approach, in particular the weak Cerami—Palais—Smale
condition (see Definition 2.1), then in Section 3 we introduce the “right” variational
setting and recall the existence result for the more general problem (1.10). Then, in
Section 4 we state our main existence results and, at last, in Section 5 we give an hint
of a direct proof of Theorem 4.1 in order to point out the different approach with
respect to the previous results which allow us to have conditions on the nonlinear
term f(x,u) which are independent of g(u).

2. ABSTRACT FRAMEWORK

Throughout this section, we assume that:
e (X,|-]lx) is a Banach space with dual (X', | -

x);
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e (W,] - |lw) is a Banach space such that X < W continuously, i.e. X C W
and a constant og > 0 exists such that

[€llw < o0 [[€llx  forall £ € X;

e J:DCW = Rand J € CHX,R) with X C D.

For simplicity, taking 8 € R, we say that a sequence (§,), C X is a Cerami-
Palais-Smale sequence at level 3, briefly (C'PS)g—sequence, if

lim J(&n) = and rfoo ”dJ (fn) HX'(l + anHX) =0.

li
n——+oo n—

Moreover, 8 is a Cerami—Palais—Smale level, briefly (CPS)-level, if there exists a
(C'PS)s—sequence.

As (CPS)g—sequences may exist which are unbounded in || - || x but converge with
respect to || - |lw, we have to weaken the classical Cerami—Palais—Smale condition
in a suitable way according to the ideas already developed in previous papers (see,

e.g., [5]).

Definition 2.1. The functional J satisfies the weak Cerami—Palais—Smale condition
at level 5 (8 € R), briefly (wCPS)g condition, if for every (CPS)g—sequence (&),
a point £ € X exists, such that

(i) 11111 l€, — &llw =0 (up to subsequences),
n—-—+0oo
(i) J(&) =B, dJ(§) =0.
If J satisfies the (wC'PS)g condition at each level 8 € I, I real interval, we say that
J satisfies the (wC'PS) condition in I.

Since Definition 2.1 allows one to prove a Deformation Lemma (see [5]), the
following generalization of the Ambrosetti-Rabinowitz Mountain Pass Theorem can
be stated (for the proof, see [5, Theorem 1.7] with remarks in [8, Theorem 2.2] and
compare it with [I, Theorem 2.1]).

Theorem 2.2 (Mountain Pass Theorem). Let J € C'(X,R) be a functional such
that J(0) = 0 and the (WCPS) condition holds in R. Moreover, assume that two
constants r, 0 > 0 and a point e € X exist such that

ve X, |ulw=r = J(u)>oyp,

llellw > r and J(e) < o.
Then, J has a critical point u* € X such that

J(u*) = inf sup J(y(s)) = ¢
el s€[0,1]

withT' = {y e C([0,1],X) : v(0) =0, (1) = e}.

3. VARIATIONAL SETTING AND THE QUASILINEAR PROBLEM

From now on, let N = 3 and, taking any open subset Q C R3, we denote by:
e N=1{1,2,...} the set of the strictly positive integers;
e Br(z) = {y € R?: |y — 2| < R} the open ball with center in z € R3 and
radius R > 0;
e |D| the usual 3-dimensional Lebesgue measure of a measurable set D in R?;
e (L"(9),]-|a,r) the classical Lebesgue space with norm [ulo,» = (g, |u|”dm)1/7l
ifl1 <r<4oo;
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o (L*>°(),|"|,00) the space of Lebesgue-measurable essentially bounded func-
tions endowed with norm |u|g e = ess sup |u(z)|;
e

o (H}(Q),]]]la) is the classical Sobolev space with ||ullq = (|Vu|?272+\u|?2_’2)%.
Moreover, if potential V : R? — R satisfies condition (V}), we denote by
o (LL,(Q),]|a,vr), 1 <7 < 400, the weighted Lebesgue space with

Lh(Q) = {u e L"(Q): /QV(x)de < +oo}

endowed with the norm

1
lulo,v,r = (/ V(:z:)|u|rd:1:> ;
Q

o (Hjy(Q),] - [la,v) the weighted Sobolev space

Hi v (Q) = {u € H}(Q): / V(z)udr < +oc}
Q
endowed with the norm

1
lulley = (IVulés + luld v.)?.

For simplicity, we put Br = Br(0) for the open ball with center in the origin
and radius R > 0 and, if = R3, we avoid to write the set in the norms, i.e.,

e ||, =||rs, is the norm in L"(R?), for any 1 < r < +oc;

o | |y, =]"|rev, is the norm in L}, (R3), for any 1 <r < +o0;
o |- || =1 |lgs is the norm in H'(R?) = H}(R3);

o |-|lv=|"llrsv is the norm in H{(R3) = H&V(R?’).

Remark 3.1. If weight V() satisfies assumption (V7), then we have the following
continuous embeddings:

Ly (R3) < L"(R?) for any 1 <7 < +0o0, (3.1)
and then
HL(R?) — HY(R?).
From Remark 3.1 and classical Sobolev Embedding Theorems, we deduce the

following result (for the compact embeddings, see [2, Theorem 3.1]).

Theorem 3.2. If weight V : R® — R satisfies assumption (Vy), then the following
continuous embedding hold:
H{(R®) < L"(R®)  forany 2 <71 <6. (3.2)
Furthermore, if assumption (Vo) also occurs, we have the compact embedding
HE(R?) << L™(R?)  for any 2 <r < 6. (3.3)

For any r > 2 so that (3.2) holds, Theorem 3.2 implies that a constant 7. > 0

exists such that
lul, < 7ollully  for all uw € H{(R?). (3.4)

On the other hand, taking Q open bounded domain in R3, the classical embedding
theorem implies that a constant o, > 0 exists, independent of €2, such that

[vjg2s < oulv]lq for all v € HY(Q).
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From now on, we assume that potential V(z) satisfies condition (V7) and we set
X :=Hy(R*)NL®R* and |ullx = |lullv + |u|lo forany ue X. (3.5)

Remark 3.3. From (3.1) and [10, Lemma 3.3] it follows that the continuous em-
bedding X < L"(R3) holds for every r > 2.

Now, we recall the existence result for solutions of problem (1.10) as stated in
[10]. To this aim, for the coefficient A : (z,u) € R? x R +— A(z,u) € R we consider
the following conditions:

(ho) A(z,u) is a C1-Carathéodory function with A, (x,u) = a%A(:v,u), ie, a
function measurable in z for all u € R and C! in u for a.e. 2 € R3;
(hy) for any p > 0 we have that

sup |A(-,u)| € LOO(RS), sup |A,(-,u)| € LOO(RB);
ful<p jul<p

(h2) a constant ag > 0 exists such that
A(z,u) >y a.e inR3, forall u € R;
(h3) some constants g > 2 and a7 > 0 exist so that
(p—2)A(z,u) — Ay(x,u)u > a1 A(z,u) ae. in R for all u € R;
(h4) a constant ag > 0 exists such that
2A(z,u) + Au(x,u)u > agA(x,u) a.e. in R for all u € R.
On the other hand, we suppose that the nonlinear term f : R?® x R — R may

satisfy the following hypotheses:
(fo) f(z,u) is a Carathéodory function;
(f1) a1,a2 >0 and g > 2 exist such that
If(z,u)| < arfu| + aglu|?™!  ae. in R?, for all u € R;

T, U _ . .
(f2) limsup M =& < — uniformly a.c. with respect to = € R?;
u—0 U )

(f3) a constant p > 2 exists such that
0 < puF(z,u) < f(z,u)u ae. in R® for all u # 0;
where 75 > 0 is so that (3.4) holds with r = 2.
Remark 3.4. From hypotheses (o), (f1), we infer that

F:(2,u) € R XR»—>/ f(z,t)dt € R
0

is a well defined C'~Carathéodory function. Moreover, assumption (f;) establishes
also that

F(z,0) = f(x,0)=0 for a.e. x € R>. (3.6)

Thus, from [10, Theorem 4.4] with p = 2 and N = 3, hence p* = 6, the following
result can be stated.

Theorem 3.5. Under assumptions (V1)—(V3), (ho)—(hs) and (fo)—(f3), so that the
same [ satisfies both (hg) and (f3), and the growth exponent q in (f1) is such that

q <0,

then problem (1.10) admits at least one weak nontrivial bounded solution.
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Remark 3.6. If gis asin (f1) and p is as in (f3), then in the hypotheses of Theorem
3.5 it has to be u < ¢, hence we have that

2<pu<g<eb.

We note that the existence of solutions of equation (1.10) is obtained by means
of a variational approach. More precisely, the hypotheses (V1), (ho)—(h1) and (fo)-
(f1) allow us to state a good variational principle so that we have to look for critical
points of the functional

Ti(u) = 1/ Az, u)|Vul*dx + 1/ V (2)u’dx 7/ F(z,u)dz (3.7)
2 R3 2 R3 R3
which is well defined and of class C! in the Banach space X defined in (3.5) (see
[10, Proposition 3.10]).

Unluckily, due to the intersection norm in (3.5) which involves both the Hi-(R3)-
norm and the L‘X’(R3) one, functional 7, cannot satisfy the classical Palais—Smale
condition (or its variants) in X even if we replace the whole Euclidean space with
one bounded subset (see [6, Example 4.3]), so we have to consider the weak Cerami-
Palais—Smale condition and consider X equipped with two different norms, namely
I Ilx and || [lv-

The idea of the proof of Theorem 3.5 relies also on an approximation argument
as a sequence (uy)x is found so that for each k € N function uy is a weak bounded
solution of equation (1.10) but in the open ball By, with Dirichlet boundary condition
ur = 0 on 0Bg. Then, a nontrivial critical point for J, in X is constructed as a
suitable limit of sequence (uy ).

4. EXISTENCE RESULTS

Now, we are ready to state the main existence result for problem (1.1) which is
considered a particular case of equation (1.10).

Theorem 4.1. Assume that potential V(x) satisfies conditions (V1)—(V3) and that
the nonlinear term f(x,u) is so that hypotheses (fo)—(f3) hold. Moreover, let us
consider a function | : Ry — R such that:

(Ho) U(s) is of class C* on R ;

(H1) U(s)l"(s) <0 for all s > 0;

(Hz2) a constant a, > 0 exists such that

[1()] + sl'(s)I"(s) > au[l'(s)]*  for all s > 0.

If g in (f1) and p in (f3) are such that (1.11) is verified then, taking g(u) as in
(1.4), problem (1.1) admits at least one weak nontrivial bounded solution.
Proof. Taking A(wx,u) = g?(u), from (1.4) we have that

A(z,u) = 1+20°[(W®)]?, Au(z,u) = du ([I'(w?)]? + 22°V (W) (u?)), (4.1)
then A(z,u) = A(u) > 1 for all v € R and assumption (#) implies that A(z,u)
satisfies conditions (hg)—(ha).
On the other hand, in our setting (h3) reduces to
p— 24 2(p — D[l (W] — 4wl (W) (u?) > g + 200l (u?))? for all u € R,

and a suitable a; > 0 exists if (1) holds just taking any p > 4, in particular taking
was in (f3) so that (1.11) is satisfied.

At last, direct computations and (4.1) allow us to prove that (h4) follows from (Ha).
Hence, the existence result for problem (1.1) is a corollary of Theorem 3.5. (I
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Remark 4.2. As pointed out at the end of Section 3, the weak solutions of (1.10)
we look for are critical points of 7, defined in X as in (3.7). Thus, in the setting
of equation (1.1), if hypotheses (V1), (Ho) and (fo)—(f1) hold, such a functional
reduces to

() = % /R Pl Vulde + % /R V(s - /R Flrude (42)

which is of class C! in X with Fréchet differential in u along the direction v given

by

(@7t),0 = |

R3
+/]R3 V(z)uvdx — /R3 f(z,u)vdz

for any u, v € X (see [10, Proposition 3.10]).

g*(uw)Vu - Vodr + / g(w)g' (u)v|Vu|?dz
R (4.3)

In Section 1 we have justified the importance of equation (1.1) by means of its
connections to the quasilinear Schrédinger equation (1.2), in particular pointing out
the stationary Schrédinger problem (1.3). Then, in order to consider its possible
applications, we have to look for positive solutions of (1.1), i.e., we have to solve
problem

{ —div(g*(u)Vu) + g(u)g'(0)|Vul* + V(z)u = f(z,u) inR?,

u>0 in R3. (4.4)

To this aim, we need the following Harnack type inequality for weak solutions of
p-Laplacian type equations that we adapt to our setting (see [22, Theorem 1.1]).

Lemma 4.3. Taking p > 1 and Q domain in RN, let u € Wol’p(ﬂ) be a weak
solution of the equation

—div(a(z,u, Vu)) = h(z,u, Vu) in a cube K(3r) C Q.
Assume that M > 0 exists such that 0 < u(z) < M for a.e. v € K(3r). If some
constants b; > 0, eventually depending on M, exist such that
la(z,t,€)| < bo [€]P7H +buftP,
a(x,t,8) & = [¢F —balt]”, (4.5)
[z, t,)] < bsl€P + bal€[P" + bs|tP~
for a.e. x € Q and all (t,€) €] — M, M[xR3, then

ess supi(z) < Cess infu(zx),
zeK(r) zeK(r)

where C depends only on N, p, M, r and the constants which appear in the hy-

potheses.

So, we can state and prove the existence result for positive solutions of (1.1).

Theorem 4.4. Assume that potential V(x) satisfies conditions (V1)—(V3) and a
given function 1 : Ry — R is such that (Ho)—(Hz) hold. Then, if the nonlinear
term f(x,u) is so that hypotheses (fy )—(fs) are verified with q and p satisfying
estimate (1.11), taking g(u) as in (1.4), equation (1.1) admits at least one weak
bounded strictly positive solution, i.e., problem (4.4) has a solution.
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Proof. In the hypotheses (f;7)—(fi), we can consider the function f; : R* xR — R
defined as

f(z,u) forae xe€R3 all u>0,

0 for a.e. z € R3, all u < 0,

f+ (I, u) = {
and its related primitive

F(z,u) fora.e. z€R3 allu>0,
0 for a.e. z € R?, all u < 0.

Fy(z,u) = /Ou fi(z, t)dt = {

Hence, direct computations allow one to check that fi(z,u) and F(z,u) satisfy
assumptions (fo)—(f2) while the “partial condition” in (f;) is enough for replacing
(f3) still obtaining the existence of a critical point of the C' functional

Ty (u) = %/ﬂ@ g% ()| Vu|?dx + %/R:‘ V(z)u’dr — /}R'J Fy(x,u)dz

in the Banach space X defined in (3.5) (see Remark 4.2). We note that, for any
u,v € X, its Fréchet differential is given by

(W (w.0) = [

R3
+ /1R3 V(z)uvdx — /R3 S+ (z,w)vdz.

Now, let 2 € X be a critical point of J; in X. We claim that it is @ > 0 a.e. in
R3; hence, J (i) = J4 (%) and @ is a critical point for the functional (4.2), too. The
proof is similar to that one of [9, Proposition 4.5], but, for completeness, we give
here the details.

Firstly, we note that, from (Ho) and (1.5) some constants M > 0 and kps > 0 exist
such that

g% (u)Vu - Voda + / g(u)g' (w)v |Vul?dz
R (4.6)

Uloo < M ¢ ! < 4.
(o < M, max g(t)g'(8)] < ks, (4.7)
which imply that
lg(a(z))g' (a(z))| < kar  for ae. z € R3. (4.8)

Then, let us consider the real map

o\ 2
W(t) =te™ | withn > <7M> > 0,
so, by definition, we have that ¢(t) is a smooth odd function such that

th(t) >t2 >0 and () — kalop(t)] > % for all t € R. (4.9)

Now, if a_ = max{—u,0}, we have that
a=—-u_inQ_ ={zeR3:u(2x) <0} and 4_=0ae inR*\Q_. (4.10)

Moreover, it is ¢(—u_) € X. Hence, from dJ, (@) = 0, taking v = ¢(—u_) in (4.6)
we have that

0= w'(—ﬁf)QQ(ﬁ)Vﬂ'V(—ﬁf)der/ g(@)g (@) (~u-)|Val*de
R3 R3

+ [ V@meayde - [ e oo
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where from (4.10) it follows that
[t mu-a =0,
R3
Thus, (1.4), (4.8)-(4.10), (V1) and direct computations imply that

0 = [ W(-a_)gA(~a)|V(~a_)Pda
Q_

+ / o(—a_)g (~a_)b(—a) |V (~a) P + / V(@)(~a_)(—a_)dx

> [ @@ k@)@ [ Vi
1 N2 5 L, o
= 5/97 |V (a)] d“/g, V(@)lafde > -lla-|

which provides that 4 = 0 a.e. in R3.

Thus, we have proved that @ € X is a nontrivial weak solution of (1.1) with @ >0
a.e. in R3 and, in order to prove % > 0 a.e. in R3, we have to apply Lemma 4.3
with N =3, p=2, Q=R? and

(Z(J?,t,g) = 92(t)€a h(iE,t,f) = 7g(t)g/(t)‘§|2 - V(‘T)t + er(I,t)

as fi(z,7) = f(z,7) a.e. in R3.
To this aim, taking any cube K (3r) in R? with center in the origin, from (Ho), (V4),
(V3), (f1), (1.4), (4.7) and direct computations we have that conditions (4.5) hold
with
bp = max gQ(t), by = ks, bs = esssup V(z) + a1 + asM972 by = by = by = 0.
[tI<M €K (3r)
Then, arguing by contradiction, assume that & = 0 in a set with positive 3—
dimensional Lebesgue measure. Thus, 7 > 0 exists so that for all 7 > 7 it results
ess infa(z) =0
zeK(r)
which implies @ = 0 a.e. in K(r) from Lemma 4.3. Hence, % = 0 a.e. in R3
for the arbitrariness of the cube K(r) and by a standard covering argument, in
contradiction with % nontrivial.
So, @ is a weak bounded strictly positive solution of (1.1). O

Proof of Theorems 1.1 and 1.2. From (1.4) we have that problem (4.4) reduces to
(1.7) if I(s) = s, respectively to (1.9) if I(s) = v/1 + s. Hence, since direct compu-
tations allow us to prove that both the functions I(s) = s and I(s) = /1 + s satisfy
conditions (Hg)—(Hz), then Theorem 1.1, respectively Theorem 1.2, follows from
Theorem 4.4. O

5. REHASHING PROBLEM THROUGH BOUNDED DOMAINS

In Section 4 we have proved Theorem 4.1 as a corollary of Theorem 3.5. Now,
our aim is to outline the main arguments of a direct proof of Theorem 4.1 in order
to point out both the variational approach and the approximating arguments we
use.
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Thus, throughout this section let us assume that the hypotheses of Theorem 4.1
are satisfied and, as noted in Remark 4.2, from assumptions (V1), (Ho) and (fo)—
(f1) it follows that the weak (bounded) solutions of equation (1.1) are the critical
points of the C' functional J : X — R defined in (4.2), on the Banach space X as
in (3.5), with Fréchet differential given by (4.3).

On the other hand, for each k& € N let us consider the open ball By with center
0 and radius k and define

Xy = Xp, = Hyy(Bie) N L™ (Bg)
endowed with the norm
lullx, = llulls,.v + lulB, .00 for any u € Xy

and with dual space X;. Actually, since any function v € X}, can be trivially
extended to a function @ € X just assuming @(z) = 0 for all € R3\ By, then

[all = llullse,  lallv = llulsev, laleo = lulBycor  [lallx = llullxy,

where the norms |Vu|g, 2, ||u| g, and ||u||p,, v are equivalent since By, is bounded
and (V3) holds.

So, if we consider the restriction
jk tuc Xk — jk(u) = jlxk(u) S R,

we obtain that

1 .
Ti(u) = —/ *(w)|Vul|*dx —/ F(z,u)dx, ue€ Xy,
2 /B, By
where we take
- 1
F(z,u) = F(x,u) — §V(I)\u\2 for a.e. € R®. (5.1)

We note that, in hypotheses (V1), (V3) and (fo)—(f3) the map

f(z,u) = f(r,u) = V(z)u for ae. x€R? alucR,
is a Carathéodory function such that

|f(z,u)| < (a1 + |V|B,.00)|u| + azlul?™"  a.e. in By, for all u € R,

f(z,u 1 . .
lim sup M < & < —; uniformly a.e. with respect to x € By,
u—0 U T3

and
0 < pF(z,u) < f(z,u)u a.e. in By, for all u # 0.
Thus, functional J; is C' in X}, with Fréchet differential given by

(@iw.o) = [

By,

g*(u)Vu - Vudz + / g(u)g' (v)v|Vu|?dz — [z, w)vdx
By B

for any u, v € Xj. Moreover, from (1.4), (4.1) and properties (Ho)—(H1) it satisfies

the (wCPS) condition in R (see [4, Proposition 3.4]).

Now, as in [10, Section 4], we claim that in our setting the geometrical as-
sumptions required by Theorem 2.2 are satisfied but so to obtain some constants
independent of the particular radius k£ of the bounded domain Bjy.

In fact, o, a* > 0 exist so that

veX, |lulv=0 = J(u)>a" (5.2)
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(see [10, Proposition 4.8]) Furthermore, fixing @ € X such that
supp@ C By and |QF] >0, with QF={zeR®: |a(z) > 1},
it follows that
J(sti)) - —oc0  as s — oo
(see [10, Proposition 4.9]). Thus, 5§ > 0 exists so that

lu“lv >0 and J(u*)<a*
with «* = s, suppu® C By and p, a* as in (5.2).
Clearly, for all £ > 1 we have that suppu®™ C B, so u* € X, and if we consider
the segment joining 0 to u*, namely
v :rs€0,1] — su” € X,
we obtain that suppy*(s) C By, for all s € [0, 1]. Hence, v*([0,1]) C X} and then
v* € Iy, with

[y ={y e C([0,1], Xp,) : 7(0) =0, 7(1) = u"},
and, for the continuity of J o~* : s € [0,1] = J(su*) € R, o € R exists,
independent of k, such that
= me ). 5.3
o’ = max, J(su”) (5.3)
Moreover, from (3.6) and (5.1) we obtain J3(0) = 0. Thus, Theorem 2.2 applies
to Jx in X, and, for the arbitrariness of k € N, a sequence (ux)r C X exists such
that for each k € N it results:
(Z) ug € X with ux =0 in R? \ By,
() o < JT(up) < o™,
(ii1) (dT (ug),v) =0 for all v € Xy,
with o* as in (5.2) and «** as in (5.3), both independent of k.

Then, as in [10, Propositions 6.3 and 6.4], a positive constant M, exists such
that

||lugllx < My  for all k € N.

Hence, a function us € H{,(R3) exists such that, up to subsequences, also from
(3.3) we have that

Up — Uso 0 HL(R3),

Uk — Uso  strongly in L?(R3),

Up = Uoo a.€. in R3.
Actually, us, € L>(RY), too (see [10, Proposition 6.5]); hence, by definition (3.5),
we infer that u., € X.

Finally, as in [10, Propositions 6.8 and 6.9], we are able to prove that
up — Uoe  strongly in Hi,(Bg) for all R > 1
and also
(dT (uso), ) =0 for all p € C°(R3)

with C2°(R3) = {p € C®(R?) : suppyp CC R3}.
Hence, dJ (ux) = 0 in X and, by using again the compact embedding (3.3) and

arguing by contradiction as in the proof of [10, Theorem 4.4], we are able to prove
that u is a nontrivial weak solution of equation (1.1).
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