Measuring structural features of proteins dispersed in buffer solution, in contrast to crystal form, is indispensable in understanding morphological characteristics of the biomolecule in a native environment. We report on the structure and apparent viscosity of unfolded α and β variants of SARS-CoV-2 spike proteins dispersed in buffer solutions. The radius of gyration of the β variant is found to be larger than that of the α variant, while the ab initio computation of one of the possible particle-like bodies is consistent with the small-angle X-ray scattering (SAXS) profiles resembling a conformation similar to the three-dimensional structure of the folded state of the corresponding α and β spike variant. However, a smaller radius of gyration with respect to the predicted folded state of 2.4 and 2.7 is observed for both α and β variants, respectively. Our work complements the structural characterization of spike proteins using cryo-electron microscopy techniques. The measurement/analysis discussed here might be useful for quick and cost-effective evaluation of several protein structures, let alone mutated viral proteins, which is useful for drug discovery/development applications.

Measuring the Radius of Gyration and Intrinsic Flexibility of Viral Proteins in Buffer Solution Using Small-Angle X-ray Scattering

Riccardo Funari;Luigi Gentile
2022-01-01

Abstract

Measuring structural features of proteins dispersed in buffer solution, in contrast to crystal form, is indispensable in understanding morphological characteristics of the biomolecule in a native environment. We report on the structure and apparent viscosity of unfolded α and β variants of SARS-CoV-2 spike proteins dispersed in buffer solutions. The radius of gyration of the β variant is found to be larger than that of the α variant, while the ab initio computation of one of the possible particle-like bodies is consistent with the small-angle X-ray scattering (SAXS) profiles resembling a conformation similar to the three-dimensional structure of the folded state of the corresponding α and β spike variant. However, a smaller radius of gyration with respect to the predicted folded state of 2.4 and 2.7 is observed for both α and β variants, respectively. Our work complements the structural characterization of spike proteins using cryo-electron microscopy techniques. The measurement/analysis discussed here might be useful for quick and cost-effective evaluation of several protein structures, let alone mutated viral proteins, which is useful for drug discovery/development applications.
File in questo prodotto:
File Dimensione Formato  
acsmeasuresciau.2c00048.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 2.01 MB
Formato Adobe PDF
2.01 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/409753
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 6
social impact