Abstract: The effect of the exposure of the photosynthetic reaction center from the purple bacterium Rhodobacter sphaeroides to ethylenediamine (EDA) was investigated by transient absorption spectroscopy and UV–Visible-Near Infrared absorption spectroscopy. We show that EDA is not detrimental to the photoactivity of the protein even at pH close to 12. EDA instead appears to inhibit the secondary quinone binding site with an apparent binding constant of 19.05 mM−1. Graphic abstract: [Figure not available: see fulltext.]
Ethylenediammine is not detrimental to the photoactivity of the bacterial photosynthetic reaction center
Gabriella Buscemi;Danilo Vona;Rossella Labarile;Roberta Ragni;Gianluca M. Farinola;
2021-01-01
Abstract
Abstract: The effect of the exposure of the photosynthetic reaction center from the purple bacterium Rhodobacter sphaeroides to ethylenediamine (EDA) was investigated by transient absorption spectroscopy and UV–Visible-Near Infrared absorption spectroscopy. We show that EDA is not detrimental to the photoactivity of the protein even at pH close to 12. EDA instead appears to inhibit the secondary quinone binding site with an apparent binding constant of 19.05 mM−1. Graphic abstract: [Figure not available: see fulltext.]File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
50_mrs_adv_2021_43580-021-00003-6.pdf
non disponibili
Tipologia:
Documento in Versione Editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
1.3 MB
Formato
Adobe PDF
|
1.3 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.