This paper describes the system proposed by the Random team for SemEval-2020 Task 1: Unsupervised Lexical Semantic Change Detection. We focus our approach on the detection problem. Given the semantics of words captured by temporal word embeddings in different time periods, we investigate the use of unsupervised methods to detect when the target word has gained or lost senses. To this end, we define a new algorithm based on Gaussian Mixture Models to cluster the target similarities computed over the two periods. We compare the proposed approach with a number of similarity-based thresholds. We found that, although the performance of the detection methods varies across the word embedding algorithms, the combination of Gaussian Mixture with Temporal Referencing resulted in our best system.

GM-CTSC at SemEval-2020 Task 1: Gaussian Mixtures Cross Temporal Similarity Clustering

Cassotti, Pierluigi;Polignano, Marco;Basile, Pierpaolo
2020-01-01

Abstract

This paper describes the system proposed by the Random team for SemEval-2020 Task 1: Unsupervised Lexical Semantic Change Detection. We focus our approach on the detection problem. Given the semantics of words captured by temporal word embeddings in different time periods, we investigate the use of unsupervised methods to detect when the target word has gained or lost senses. To this end, we define a new algorithm based on Gaussian Mixture Models to cluster the target similarities computed over the two periods. We compare the proposed approach with a number of similarity-based thresholds. We found that, although the performance of the detection methods varies across the word embedding algorithms, the combination of Gaussian Mixture with Temporal Referencing resulted in our best system.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/408453
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact