This paper describes our participation in the tool competition organized in the scope of the 1st International Workshop on Natural Language-based Software Engineering. We propose a supervised approach relying on fine-tuned BERT-based language models for the automatic classification of GitHub issues. We experimented with different pre-trained models, achieving the best performance with fine-tuned RoBERTa (F1 =.8591).

Issue Report Classification Using Pre-trained Language Models

Colavito G.;Lanubile F.;Novielli N.
2022-01-01

Abstract

This paper describes our participation in the tool competition organized in the scope of the 1st International Workshop on Natural Language-based Software Engineering. We propose a supervised approach relying on fine-tuned BERT-based language models for the automatic classification of GitHub issues. We experimented with different pre-trained models, achieving the best performance with fine-tuned RoBERTa (F1 =.8591).
2022
9781450393430
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/407914
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 9
social impact