Interfacing intact and metabolically active photosynthetic bacteria with abiotic electrodes requires both establishing extracellular electron transfer and immobilizing the biocatalyst on electrode surfaces. Artificial approaches for photoinduced electron harvesting through redox polymers reported in literature require the separate synthesis of artificial polymeric matrices and their subsequent combination with bacterial cells, making the development of biophotoanodes complex and less sustainable. Herein, we report a one-pot biocompatible and sustainable approach, inspired by the byssus of mussels, that provides bacterial cells adhesion on multiple surfaces under wet conditions to obtain biohybrid photoanodes with facilitated photoinduced electron harvesting. Purple bacteria were utilized as a model organism, as they are of great interest for the development of photobioelectrochemical systems for H-2 and NH3 synthesis, biosensing, and bioremediation purposes. The polydopamine matrix preparation strategy allowed the entrapment of active purple bacteria cells by initial oxygenic polymerization followed by electrochemical polymerization. Our results unveil that the deposition of bacterial cells with simultaneous polymerization of polydopamine on the electrode surface enables a 5-fold enhancement in extracellular electron transfer at the biotic/abiotic interface while maintaining the viability of the cells. The presented approach paves the way for a more sustainable development of biohybrid photoelectrodes.
Bio-Inspired Redox-Adhesive Polydopamine Matrix for Intact Bacteria Biohybrid Photoanodes
Buscemi, Gabriella;Vona, Danilo;Labarile, Rossella;Cosma, Pinalysa;Agostiano, Angela;Farinola, Gianluca M;Grattieri, Matteo
2022-01-01
Abstract
Interfacing intact and metabolically active photosynthetic bacteria with abiotic electrodes requires both establishing extracellular electron transfer and immobilizing the biocatalyst on electrode surfaces. Artificial approaches for photoinduced electron harvesting through redox polymers reported in literature require the separate synthesis of artificial polymeric matrices and their subsequent combination with bacterial cells, making the development of biophotoanodes complex and less sustainable. Herein, we report a one-pot biocompatible and sustainable approach, inspired by the byssus of mussels, that provides bacterial cells adhesion on multiple surfaces under wet conditions to obtain biohybrid photoanodes with facilitated photoinduced electron harvesting. Purple bacteria were utilized as a model organism, as they are of great interest for the development of photobioelectrochemical systems for H-2 and NH3 synthesis, biosensing, and bioremediation purposes. The polydopamine matrix preparation strategy allowed the entrapment of active purple bacteria cells by initial oxygenic polymerization followed by electrochemical polymerization. Our results unveil that the deposition of bacterial cells with simultaneous polymerization of polydopamine on the electrode surface enables a 5-fold enhancement in extracellular electron transfer at the biotic/abiotic interface while maintaining the viability of the cells. The presented approach paves the way for a more sustainable development of biohybrid photoelectrodes.File | Dimensione | Formato | |
---|---|---|---|
2022.2 ACS AMI.pdf
accesso aperto
Descrizione: Articolo in rivista
Tipologia:
Documento in Versione Editoriale
Licenza:
Creative commons
Dimensione
6.24 MB
Formato
Adobe PDF
|
6.24 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.