One of the main problems in online advertising is to display ads which are relevant and appropriate w.r.t. what the user is looking for. Often search engines fail to reach this goal as they do not consider semantics attached to keywords. In this paper we propose a system that tackles the problem by two different angles: help (i) advertisers to create more efficient ads campaigns and (ii) ads providers to properly match ads content to keywords in search engines. We exploit semantic relations stored in the DBpedia dataset and use an hybrid ranking system to rank keywords and to expand queries formulated by the user. Inputs of our ranking system are (i) the DBpedia dataset; (ii) external information sources such as classical search engine results and social tagging systems. We compare our approach with other RDF similarity measures, proving the validity of our algorithm with an extensive evaluation involving real users. © 2010 ACM.

Semantic tags generation and retrieval for online advertising

Ragone Azzurra;Di Sciascio E.
2010-01-01

Abstract

One of the main problems in online advertising is to display ads which are relevant and appropriate w.r.t. what the user is looking for. Often search engines fail to reach this goal as they do not consider semantics attached to keywords. In this paper we propose a system that tackles the problem by two different angles: help (i) advertisers to create more efficient ads campaigns and (ii) ads providers to properly match ads content to keywords in search engines. We exploit semantic relations stored in the DBpedia dataset and use an hybrid ranking system to rank keywords and to expand queries formulated by the user. Inputs of our ranking system are (i) the DBpedia dataset; (ii) external information sources such as classical search engine results and social tagging systems. We compare our approach with other RDF similarity measures, proving the validity of our algorithm with an extensive evaluation involving real users. © 2010 ACM.
2010
9781450300995
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/401574
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? ND
social impact