Document clustering plays an important role in several applications. K-Medoids and CLARA are among the most notable algorithms for clustering. These algorithms together with their relatives have been employed widely in clustering problems. In this paper we present a solution to improve the original K-Medoids and CLARA by making change in the way they assign objects to clusters. Experimental results on various document datasets using three distance measures have shown that the approach helps enhance the clustering outcomes substantially as demonstrated by three quality metrics, i.e. Entropy, Purity and F-Measure.

Modification to K-medoids and CLARA for effective document clustering

Ragone Azzurra;Di Noia T.
2017-01-01

Abstract

Document clustering plays an important role in several applications. K-Medoids and CLARA are among the most notable algorithms for clustering. These algorithms together with their relatives have been employed widely in clustering problems. In this paper we present a solution to improve the original K-Medoids and CLARA by making change in the way they assign objects to clusters. Experimental results on various document datasets using three distance measures have shown that the approach helps enhance the clustering outcomes substantially as demonstrated by three quality metrics, i.e. Entropy, Purity and F-Measure.
2017
978-3-319-60437-4
978-3-319-60438-1
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/401554
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 5
social impact