In the last years, deep learning has shown to be a game-changing technology in artificial intelligence thanks to the numerous successes it reached in diverse application fields. Among others, the use of deep learning for the recommendation problem, although new, looks quite promising due to its positive performances in terms of accuracy of recommendation results. In a recommendation setting, in order to predict user ratings on unknown items a possible configuration of a deep neural network is that of autoencoders typically used to produce a lower dimensionality representation of the original data. In this paper we present KG-AUTOENCODER, an autoencoder that bases the structure of its neural network on the semantics-aware topology of a knowledge graph thus providing a label for neurons in the hidden layer that are eventually used to build a user profile and then compute recommendations. We show the effectiveness of KG-AUTOENCODER in terms of accuracy, diversity and novelty by comparing with state of the art recommendation algorithms.

Computing recommendations via a knowledge graph-aware autoencoder

Di Noia T.;Ragone Azzurra;Di Sciascio E.
2018-01-01

Abstract

In the last years, deep learning has shown to be a game-changing technology in artificial intelligence thanks to the numerous successes it reached in diverse application fields. Among others, the use of deep learning for the recommendation problem, although new, looks quite promising due to its positive performances in terms of accuracy of recommendation results. In a recommendation setting, in order to predict user ratings on unknown items a possible configuration of a deep neural network is that of autoencoders typically used to produce a lower dimensionality representation of the original data. In this paper we present KG-AUTOENCODER, an autoencoder that bases the structure of its neural network on the semantics-aware topology of a knowledge graph thus providing a label for neurons in the hidden layer that are eventually used to build a user profile and then compute recommendations. We show the effectiveness of KG-AUTOENCODER in terms of accuracy, diversity and novelty by comparing with state of the art recommendation algorithms.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/401550
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? ND
social impact