We propose a quantum metrological protocol based on a Mach-Zehnder interferometer with a squeezed vacuum input state and an antisqueezing operation at one of its output channels. A simple and intuitive geometrical picture of the state evolution is provided by the marginal Wigner functions of the state at each interferometer output channel. The protocol allows us to detect the values of the sum β=12(φ1+φ2)+θin-θout, of the relative phase θin-θout between the two squeezers, and of the average of the phase delays φ1 and φ2 in the two arms of the interferometer. The detection sensitivity scales at the Heisenberg limit and, remarkably, is robust not only to detector inefficiencies but also to any photon losses occurring before the antisqueezing operation. Interestingly, we demonstrate that in the latter case an increase of sensitivity can even occur by increasing the losses in a suitable range.

Heisenberg-limited estimation robust to photon losses in a Mach-Zehnder network with squeezed light

Facchi P.;
2022-01-01

Abstract

We propose a quantum metrological protocol based on a Mach-Zehnder interferometer with a squeezed vacuum input state and an antisqueezing operation at one of its output channels. A simple and intuitive geometrical picture of the state evolution is provided by the marginal Wigner functions of the state at each interferometer output channel. The protocol allows us to detect the values of the sum β=12(φ1+φ2)+θin-θout, of the relative phase θin-θout between the two squeezers, and of the average of the phase delays φ1 and φ2 in the two arms of the interferometer. The detection sensitivity scales at the Heisenberg limit and, remarkably, is robust not only to detector inefficiencies but also to any photon losses occurring before the antisqueezing operation. Interestingly, we demonstrate that in the latter case an increase of sensitivity can even occur by increasing the losses in a suitable range.
File in questo prodotto:
File Dimensione Formato  
199 antisq2.pdf

non disponibili

Tipologia: Documento in Versione Editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 3.3 MB
Formato Adobe PDF
3.3 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
2104.02417v1.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 14.54 MB
Formato Adobe PDF
14.54 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/396232
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 14
social impact