We prove by using an iteration argument some blow-up results for a semilinear damped wave equation in generalized Einstein–de Sitter spacetime with a time-dependent coefficient for the damping term and power nonlinearity. Then, we conjecture an expression for the critical exponent due to the main blow-up results, which is consistent with many special cases of the considered model and provides a natural generalization of Strauss exponent. In the critical case, we consider a non-autonomous and parameter dependent Cauchy problem for a linear ODE of second order, whose explicit solutions are determined by means of special functions’ theory.

Blow-up results for semilinear damped wave equations in Einstein–de Sitter spacetime

Palmieri A.
2021-01-01

Abstract

We prove by using an iteration argument some blow-up results for a semilinear damped wave equation in generalized Einstein–de Sitter spacetime with a time-dependent coefficient for the damping term and power nonlinearity. Then, we conjecture an expression for the critical exponent due to the main blow-up results, which is consistent with many special cases of the considered model and provides a natural generalization of Strauss exponent. In the critical case, we consider a non-autonomous and parameter dependent Cauchy problem for a linear ODE of second order, whose explicit solutions are determined by means of special functions’ theory.
File in questo prodotto:
File Dimensione Formato  
Palmieri A. (2021 ZAMP) - Blow-up results for semilinear damped wave equations in Einstein–de Sitter spacetime.pdf

non disponibili

Tipologia: Documento in Versione Editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 595.07 kB
Formato Adobe PDF
595.07 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Palmieri A. (2021 ZAMP - post-print version) - Blow-up results for semilinear damped wave equations in Einstein–de Sitter spacetime.pdf

accesso aperto

Descrizione: versione post-print
Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 856.97 kB
Formato Adobe PDF
856.97 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/387809
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 13
social impact