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Blow-up results for semilinear damped wave equations in
Einstein-de Sitter spacetime
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Abstract. We prove by using an iteration argument some blow-up results for a semilinear damped
wave equation in generalized Einstein-de Sitter spacetime with a time-dependent coefficient for the
damping term and power nonlinearity. Then, we conjecture an expression for the critical exponent
due to the main blow-up results, which is consistent with many special cases of the considered
model and provides a natural generalization of Strauss exponent. In the critical case, we consider
a non-autonomous and parameter dependent Cauchy problem for a linear ODE of second order,
whose explicit solutions are determined by means of special functions’ theory.
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1. Introduction

In recent years, the wave equation in Einstein-de Sitter spacetime has been considered in [9, 10] in the
linear case and in [11, 12, 29] in the semilinear case. Let us consider the semilinear wave equation with
power nonlinearity in a generalized Einstein-de Sitter spacetime, that is, the equation with singular
coefficients

o —t A+ 2t gy = o], (1.1)

where k € [0,1) and p > 1. This model is the semilinear wave equation in Einstein-de Sitter spacetime
with power nonlinearity for k = 2/3 and n = 3. It has been proved in [12, 29] that for

1 < p < max {po(k,n—i— ﬁ),pl(k,n)}

a local in time solution to the corresponding nonsingular Cauchy problem (with initial data prescribed
at the initial time ¢ = 1) blows up in finite time, provided that the initial data fulfill certain integral
sign conditions. More specifically, in [12] the subcritical case for (1.1) is investigated, while in [29] the
critical case and the upper bound estimates for the lifespan are studied. Here and throughout the
paper po(k,n) is the positive root of the quadratic equation

-1 k 2 +1 3k _
(%‘m)ﬁ —("7+m)17—1*0a (1.2)
when the coefficient for p? is not positive, we set formally po(k,n) = oo, while
2

pi(k,n) =1+ ( (1.3)

1—k)n’

Note that p;(k, n) is related to the Fujita exponent pgyj(n) =1+ % Indeed, according to this notation,
it holds p1(k, ) = pry; ((1—k)n) and p;1(0,n) = pryj(n). On the other hand, po(k, n) is a generalization
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of the Strauss exponent for the classical semilinear wave equation, since pg(0,n) = pst,(n), where
psir(n) is the positive root of the quadratic equation (n — 1)p? — (n+1)p — 2 = 0.

In this paper, we generalize the model (1.1) by taking a nonnegative multiplicative constant p for
the damping term. More specifically, we investigate the blow-up dynamic for the nonsingular Cauchy
problem

Ut — t_ZkAU + [Lt_lut = |U|p T € Rn, te (1,T),
u(l,z) = eup(x) z €R", (1.4)
ue(l,z) = eup () x € R,

where k € [0,1), p > 1, p is the nonnegative multiplicative constant in the time-dependent coefficient
for the damping term and € > 0 describes the size of the initial data. Let us point out that the not
damped case p = 0 can be treated as well via our approach.

More precisely, we will focus on proving blow-up results whenever the exponent p belongs to the
range

1 <p < max {po(k,n+ t£),p1(k,n)},

under suitable sign assumptions for ug, u;. According to (1.2), the shift po(k,n + t£¢) of po(k,n) is
nothing but the positive root to the quadratic equation

(151 + i) o2 - (241 + ) -1 0. 1)

Therefore, the critical exponent pq (k, n+ ﬂ—k) for (1.4) is obtained by the corresponding exponent in
the not damped case via a formal shift in the dimension of magnitude +£3.

Let us provide an overview on the methods that we are going to use to prove the main results
in this paper. In the subcritical case 1 < p < max {po (k, n+ ﬁ),pl(k, n)}, we employ a standard
iteration argument based on a multiplier argument (see also [19, 20, 21] for further details on the
multiplier argument). This approach is based on the employment of two time-dependent functionals
related to a local solution u to (1.4) and generalizes the method from [36] for the semilinear wave
equation with scale-invariant damping. The first functional is the space average of u and its dynamic
will be considered for the iterative argument. On the other hand, we will work with a positive solution
of the adjoint linear equation in order to prove the positivity of the second auxiliary functional. Hence,
this second functional will also provide a first lower bound estimate for the first functional, allowing
us to begin with the iteration procedure. In the critical case we should sharpen our iteration frame
by considering a different time-dependent functional, so that a slicing procedure may be applied. In
comparison to what happens in the subcritical case, a more precise analysis of the adjoint linear
equation is necessary in the critical case p = pg (k, n+ ﬁ) This approach follows the one developed in
[29] which is in turn a generalization of the ideas introduced by Wakasa and Yordanov in [38, 39] and
developed in different frameworks in [31, 32, 23, 3, 4]. Whereas in the other critical case p = p1(k, n),
we can still work with the space average of a local in time solution as functional, although a slicing
procedure has to be applied in order to deal with logarithmic factors in the lower bound estimates.

1.1. Notations
Throughout this paper we use the following notations: ¢y (t) = % denotes the primitive of the speed

of propagation ay(t) = t~* that vanishes at t = 0, while the amplitude of the light cone is given by the
function

Ap(t) = /1 7R = gp(t) — P (1); (1.6)

Bpr denotes the ball in R™ with radius R around the origin; f < g means that there exists a positive
constant C' such that f < Cg and, similarly, for f 2 g; I, and K, denote the modified Bessel function
of first and second kind of order v, respectively; finally, as in the introduction, py(k,n) is the positive
solution to (1.2) and p1(k, n) is defined by (1.3).
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1.2. Main results

Before stating the main theorems, let us introduce a suitable notion of energy solution to the semilinear
Cauchy problem (1.4).

Definition 1.1. Let ug € H'(R") and uy; € L*(R™). We say that
uwee(1,T),H' (R") N6 ([1,T), L>(R")) N L},

loc

([1,T) x R™)
is an energy solution to (1.4) on [1,T) if u fulfills u(1,-) = eug in H*(R™) and the integral relation

t
Opu(t, ) (¢, ) de — 8/ ur(x)Y(1,z)dx — / Opu(s, )s(s, x) drds
Rn R» 1 R"

¢ t
—2k . .
—1-/1 /s Vu(s,x) - Vip(s, x) dacds+/1 /n s Opu(s, 2)(s, z) da ds

t
= / / lu(s, z)[Py(s, z) de ds (1.7)
1 n
for any test function ¥ € B3°([1,T) x R™) and any t € (1,T).
We point out that performing a further step of integration by parts in (1.7), we find the integral
relation

x)s(t, x) de + / pt tu(t, x)y(t, z) de

n

Oru(t, x)(t, x) da —/ ul(t

R™ R

—6/ up(x)Y(l,z)dz + ¢ uo(m)ws(l,m)dx—s/ pug(z)Y(l, z) de
Rn

(
R R

+ /t/ u(s, @) (ss(s,2) — s 2 AY(s,2) — ps™ (s, 2) + ps 2 (s, z)) de ds

//n (s,2)[PY(s,x)dzds (1.8)

for any ¢ € €3°([1,T) x R™) and any ¢t € (1,T).

Remark 1.2. Let us point out that if the Cauchy data have compact support, say suppu; C Br for
j =0,1 and for some R > 0, then, for anyt € (1,T) and any local solution u to (1.4) the support
condition

supp u(t,-) C Bria, (1)
is satisfied, where Ay, is defined by (1.6). Consequently, in Definition 1.1 it is possible to consider test
functions which are not compactly supported, i.e., 1p € B> ([1,T) x R™).

Theorem 1.3 (Subcritical case). Let p > 0 and let the exponent of the nonlinear term p satisfy
1 < p < max {po(k,n—i- lf—k),pl(k,n)} )

Let us assume that ug € H'(R") and u; € L?*(R™) are nonnegative and nontrivial functions with
supports contained in Br for some R > 0. Let

ueG([1,T), H' (R") ne ([1,T), L*(R")) N LY

loc([]" T) X Rn)
be an energy solution to (1.4) according to Definition 1.1 with lifespan T = T(e) and satisfying the
support condition supp u(t,-) C Ba, t)+r for any t € (1,T).

Then, there exists a positive constant e = eo(ug, u1,n,p, k, p, R) such that for any e € (0, &)

the energy solution u blows up in finite time. Moreover, the upper bound estimate for the lifespan

p(p—1)

RG] ; =

7o < |2 i <po(kn+ 1), (1.9)
Cg (P [ (1- k)n) ’pr < pl(k?n)a
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holds, where the positive constant C' is independent of € and
6.k, p) = 1=k (1= k)L + 258 ) p— (1 R)2gt 4 250 ) 2,

In order to properly state the results in the critical case, let us explicitly provide the threshold
for pu which yields the transition from a dominant po(k,n + $£;) to the case in which p (k, n) is the

highest exponent. Due to the fact that pg (k, n+ ﬁ) is the biggest solution of (1.5), we have that
p1(k,n) > po(k,n+ t£) if and only if

(252 + stiky) mulhom)® = (22 + 425 ) puhom) — 1> 0,

By straightforward computations, it follows that py(k,n) > po(k,n + t£5) for u > po(k,n), where

(1—k)*n% + (1 — k)(1 + 2k)n + 2

Wl — ) +2 (1.10)

,U'O(ka TL) =
Note that for k¥ = 0 the splitting value ug(k,n) does coincide with the one for the semilinear wave
equation with scale-invariant damping in the flat case from the work [18].

Theorem 1.4 (Critical case: part I). Let 0 < p < po(k,n) such that p <k or p > 2 — k. We consider
p=po(k,n+ t25). Let us assume that ug € H*(R™) and uy € L*(R™) are nonnegative and nontrivial
functions with supports contained in Bgr for some R > 0. Let

ueB([1,T),H' (R") ne'([1,T), L*(R")) N L

loc

(1L7) x R")

be an energy solution to (1.4) according to Definition 1.1 with lifespan T = T(e) and satisfying the
support condition suppu(t,-) C Ba,w)+r for anyt € (1,T).

Then, there exists a positive constant e = eo(ug, u1,n,p, k, p, R) such that for any e € (0, &)
the energy solution u blows up in finite time. Moreover, the upper bound estimate for the lifespan

T(e) < exp (Ca*p(pfl))
holds, where the positive constant C' is independent of €.

Theorem 1.5 (Critical case: part I1). Let > po(k,n) and p = p1(k,n). Let us assume that ug € H*(R™)
and uy € L*(R™) are nonnegative and nontrivial functions with supports contained in Bg for some
R >0. Let

ueG([1,T), H' (R") ne' ([1,T), L*(R")) N LY

loc

([1,T) x R™)

be an energy solution to (1.4) according to Definition 1.1 with lifespan T = T(¢) and satisfying the
support condition suppu(t,-) C Ba, t)+r for any t € (1,T).

Then, there exists a positive constant €9 = &o(ug, u1,n, p, k, 1, R) such that for any € € (0, 0]
the energy solution u blows up in finite time. Moreover, the upper bound estimate for the lifespan

T(e) < exp (Cz—:_(p_l))
holds, where the positive constant C' is independent of €.

The remaining part of the paper is organized as follows: the proof of the result in the subcritical
case (cf. Theorem 1.3) is carried out in Section 2; in Section 3 we prove Theorem 1.4 by generalizing
the approach introduced in [38]; finally, we show the proof of Theorem 1.5 in Section 4 via a standard
slicing procedure.
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2. Subcritical case

In this section we are going to prove Theorem 1.3. Let u be a local in time solution to (1.4) and let us
assume that the assumptions from the statement of Theorem 1.3 on p and on the data are fulfilled. We
will follow the multiplier approach introduced by [22] and then improved by [36], to derive a suitable
iteration frame for the time-dependent functional

Uo(t) = /n u(t, ) dz. (2.11)

In order to obtain a first lower bound estimate for Uy we will introduce a second time-dependent
functional, following the main ideas of the pioneering paper [40] and adapting them to the case with
time-depend coefficients as in [15, 12, 36, 33].

The section is organized as follows: in Section 2.1 we determine a suitable positive solution to
the adjoint homogeneous linear equation with separate variables, then, we use this function to derive
a lower bound estimate for Uy in Section 2.3; in Sections 2.2 and 2.4 the derivation of the iteration
frame and its application in an iterative argument are dealt with, respectively.

2.1. Solution of the adjoint homogeneous linear equation

In this section, we shall determine a particular positive solution to the adjoint homogeneous linear
equation

Uoo— s AV — s, + s 20 = 0. (2.12)
First of all, we recall the remarkable function
rYdo, ifn > 2,
pla) = Jors edoy iin (2.13)
cosh x ifn=1,

introduced in [40] for the study of the critical semilinear wave equation. The main properties of this
function that will used throughout this paper are the following: ¢ is a positive and smooth function
that satisfies A = ¢ and asymptotically behaves like cn|x|’%e‘m‘ as |x| — oo, where ¢, is a positive
constant depending on n.

If we look for a solution to (2.12) with separate variables, that is, we consider the ansatz
U(s,z) = o(s)p(x), then, it suffices to find a positive solution to the ODE

o —s o —pus o + pus20=0. (2.14)

We perform the change of variable 7 = ¢ (s). By using

_rdo o d®e gy do
/ k " 2k 1-k
= _— = —_— k/‘ —_
e= qr =5 g2 dr’
it follows with straightforward computations that g solves (2.14) if and only if
d?o k+p1ldo u 1
e TR e (= —1)p=0. 2.15
dr2 1—k7’d7’+ (1—-k)? 72 e ( )

To further simplify the previous equation, we carry out the transformation o(7) = 79¢(7), where

. _1tp i
0= 5 Hence, using

do d¢ d?p

o TCN

dr dr dr
we get that ¢ is a solution to (2.15) if and only if ¢ solves

d?¢ E+p\ d¢ k+p W
2 29 — - _ 72 = 0. 2.1
Td72+(0 1—k>7d7+{"(" 1—k)+(1—k)2 Ty (2.16)

071% gd2C

() = 077 L¢(7) + 77 =o(o — 1)772¢(7) + 207 (1 +77 3,
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Due to the choice of the parameter o, equation (2.16) is nothing but a modified Bessel equation of
order v = 2(#177—11@)7 that is, (2.16) can be rewritten as

2
Ld%d¢
=

If we pick the modified Bessel function of the second kind K., as solution to the previous equation,
then, up to a negligible multiplicative constant, we find

pls) = 57K, (9n(s)) (2.17)
as a positive solution to (2.14) and, in turn,
W(s,x) = pls)p(x) = s 2 Ky (¢x(s)) () (2.18)

as a positive solution of the adjoint equation (2.12).

In the next sections, we will need to employ the asymptotic behavior of the function ¢ = o(t) for
t — o0. Since K, (2) = \/7/(22)e™* (1 4+ O(271)) as z — oo for z > 0 (cf. [25, Equation (10.25.3)]),
then, the following asymptotic estimate holds

o(t) = 4/= t 2 e &M (1+ 0@ %) for t — oo. (2.19)

The solution ¥ of the adjoint equation (2.12) that we determined in this section will be employed
in Section 2.3 to introduce a second time-dependent functional with the purpose to establish a first
lower bound estimate for Uj.

2.2. Derivation of the iteration frame

In this section we are going to determine the iteration frame for the functional Uy = Uy(t) defined in
(2.11). Let us choose as test function ¥ = ¢ (s, x) in the integral relation (1.7) such that ¢ = 1 on the
forward cone {(s,z) € [1,t] x R™ : |z| < R+ Ag(s)}. Then,

t t
Opu(t, z) dx — 5/ up(x) de + / / ps topu(s,z) drds = / / lu(s, z)|P dz ds
R R 1 n 1 "

which can be rewritten as

Ui(t) = Us(1) + /j ps UL (s)ds = /1t /n lu(s,z)P dz ds.

Differentiating the last identity with respect to t, we get

Ué’(t)+ut*1U5(t):/ lu(t, z)|P dz.

Multiplying the previous equation by t#, it follows
d
U (t) 4+ pth Uy (t) = a(t“U(;(t)) = t“/ lu(t, z) P dz.

n

Integrating this relation over [1, ¢], multiplying the resulting equation by t~* and then integrating over
[1,t] again, we find

t t T
Us(t) = Uo(1) + U{)(l)/ rhdr 4 / T-ﬂ/ SH/ (s, 2)|P dz ds dr. (2.20)
1 1 1 n
On the one hand, from (2.20) we derive the lower bound estimate
Uo(t) Z e, (2.21)
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where the unexpressed positive multiplicative constant depends on ug, u; due to the nonnegativeness of
nontrivial ug, u; and U (1) = ¢ Jgn wj(x)dz for j € {0,1}. On the other hand, we obtain the estimate

/ T ”/ s“/ (s,z)|P dedsdr (2.22)

Z/ T—u/ SN(R+Ak(s))_n(p_l)(Uo(S)>pdeT,

where in the second step we applied Jensen’s inequality and the support property for u(s,-). Therefore,
we proved the following iteration frame for Uy

t T
t) > C’/ T_“/ sh=(=Rn(r=1) (7, (5))P dsdr (2.23)
1 1

for a suitable positive constant C' = C(n, p, k) and for ¢ > 1. In Section 2.2 we will employ (2.23) to
derive iteratively a sequence of lower bound estimates for Uy. However, we shall first derive in Section
2.3 another lower bound estimate for Uy that will provide, together with (2.21), the starting point for
the iteration procedure.

2.3. First lower bound estimate for the functional

Let ¥ = U(t,z) be the function defined by (2.18). Since this function is smooth and positive, by
applying the integral relation (1.8) to ¥ and using the fact that ¥ solves the adjoint equation (2.12),

we get
¢
0<// lu(s, z)|PU(s,z) dz ds
1 "

= atu(t,x)\Il(t,:c)dxf/ u(t,x)\IJs(t,x)derut_l/ u(t, ) (¢, z) dz
R” n

n

- €/n (e(M)ua () + (no(1) = ¢'(1))uo(x)) () dz.

If we introduce the auxiliary functional

Ui(t) = /n u(t, z)U(t, x) dz, (2.24)

then, from the last estimate we have

i) - 225 00+t 00 > < [ (o) + (ol - Do) p(o)ds, (229
where we applied the relation

(t) = u(t, x)dz u(t, x)dr = u(t, mxgl(t)

Ui = [ duit ot ot [ atav.o)de = [ outa)v o+ L Do)

Let compute more explicitly the term on the right-hand side of (2.25) and show its positiveness. By
using the recursive identity

K. (2) = ~Ky1(2) + LK, (2)
for the derivative of the modified Bessel function of the second kind and v =
o(1) = BT K, (6 (D) + 7 MK (01(0)
= BT (00(0) + 1 T (= Ko (00(0) + 5 TR (0n(1)) )
Pt T (60(0) — 175 MK (90(0)).

In particular, the following relations hold
po(1) — o' (1) = Kypa(¢(1)) >0, o(1) = K, (¢x(1)) >0,

2("177_116) , it follows
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so that we may rewrite (2.25) as

Ui(t) - 25;;? Ur(t) + pt UL (t) > 5/n (2.26)

(K, (gbk(l))ul () + Ky (gbk(l))uo(x))cp(m) dz .

=1y, . [uo,u1]
Multiplying (2.26) by t*/0*(t), we have
d [ th th 20/ (t) 1 th
— (== Ui(t) ) = =—=Uj(t) — thU, (t Tl — U (t) > el Uy .
i (7 110 = )~ 355 P00 ™! ) > el

Integrating the previous inequality over [1,¢] and using the sign assumption on ug, we get

Q)" ) [* 8"
Ui(t) = T(DUl(l) + el pfuo, ui) tﬂ/l 0%(s) ds

2(1) [t ogm
= EIk,u[anuﬂ t’(‘)/l QQ(S)

Thanks to (2.19), there exists Ty = To(k, p) > 1 such that

t
s Fe20k(5) 4

Ur(t) Z elk,pluo, wa] tke*%k(t)/
To
for t > Ty. Consequently, for ¢t > 2Tj, shrinking the domain of integration in the last inequality, we

have
t
s Fe20k(5) g5 = 27 ey, [uo, w1 the=20 () (ewk(t) — ez‘z”“(%))

Ui(t) 2 ely,puluo, ui] tke—2¢k(t)/
t/2

_ 2_151k,u[7-’407 Ul} tk (1 _ equk(%)—Z(bk(t)) _ 2_151k,/¢['u0, Ul] tk (1 _ e—%(l_gkfl)tlfk>
(2.27)

> 2_16]k,u[u0, w1 tk (1 - e’ﬁ@l*kfl)TS*v > etk
By repeating exactly the same computations as in [30, Section 3] (which are completely independent
y rep

of the amplitude function Ay), we obtain
n—1_7s

[ ey =0y [ @) s (o) @ TR+ A )T
Bryayt) Bryay )

Therefore, by using (2.19), for ¢ > Ty we get

/ (U(t,2)) do S ' B-oe@) 559 (R 4 Ay ()15
Briya, @)
< (=R (n=1)+[HE - (1-k) 23 ]p’ (2.28)
Then, combining Hélder’s inequality, (2.27) and (2.28), it follows
—(p—1)
[t o)ras > i)y ( / (\If(t,m»p’dx)
n Bryay )
> pykp—(1=k)(n=1)(p=1)+[(1—k) 5% ~ 52 ]p
(2.29)

> pp(1=k)(n—1)+Ep—((1-k) 272 +4 )p
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for t > Ty = 2T). Finally, plugging (2.29) in (2.20), for ¢ > T3 it holds

/ / S’L/ (s, |pdxdsd7>5p/ / st (I=k)(n=1)+&p—((1-F) "5+ 5)p 45 47
T T n T1 T

> Ept—((l—k)n;1+% p—u/ / (s — Tl),u-i-(l—k)(n—l)-‘r%p dsdr
T1 T1

> ey (=R = 8)p-n g )t (=k)(n=1)+5p+2
Summarizing we proved the lower bound estimate for the functional Uy
Uo(t) > KePt=%(t — Ty)b (2.30)
for t > Ty, where K = K(n, k, u,p, R, ug,u1) is a suitable positive constant and
ao=(1—k)"F+8)p+p,  bo=p+1—k(n—1)+5p+2. (2.31)

2.4. Iteration argument

In this section we will use the iteration frame (2.23) to prove that Uy blows up in finite time under
the assumptions of Theorem 1.3. More precisely, we are going to prove the sequence of lower bound
estimates

Uo(t) = Djt=% (t — Ty)% (2.32)

for t > T, where {D;}en, {a;}jen and {b;},cn are sequences of nonnegative real numbers that will
be determined iteratively during the proof.

Clearly, for j = 0 the estimate in (2.32) is nothing but (2.30) with Dy = KeP and ag, by defined
by (2.31). We will prove (2.32) for j > 1 iteratively. Let us assume the validity of (2.32) for some j.
We prove now its validity for j + 1 too.

Plugging (2.32) into (2.23), for ¢ > T we get

t T
Uo(t) = C Tf“/ sh=(=Rn(p=1) (7], (5))P dsdr
T T
t T
> CDP/ T—“/ st (A=mnlp=D=a;p (s T)biP dsdr
i Ty

t T
> CD?t*(lfk)n(pfl)*u*ajp / / (s — Tl)wrbjp dsdr
T1 T1

CDY
(U ptbp) 2+ e+ byp)
which is exactly (2.32) for j + 1 provided that

~(=knp=l)—pu=a;p(p _ y)2Hntbip,

D : CD? (2.33)
At b pt i) |
aj+1=(1=k)n(p—1)+p+paj, bjy1 =2+ p+pb;. (2.34)
——
=a =8
Employing recursively (2.34), we may express explicitly a; and b; as follows
j—1
aj:a—|—paj_1:...:azpk+a0pjz(ﬁ+a0> _ﬁ’ (235)

j—1
bj:ﬁ+pbj_1:...:ﬂ2pk+bop]:(%‘Fbo)p]—%. (2.36)
k=0
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Combining (2.34) and (2.36), we find
bj =24+ p+pbj—1 < (% +bo>pj,

that implies, in turn,

N CDj_, _ CcDy_,
7T (24 p+pbio1)? b3

~C

Applying the logarithmic function to both sides of the last inequality and using the resulting inequality
iteratively, we get

logD; > plogD;_1 —2jlogp + logé
> p*log Dj 5 = 2(j + (j — 1)p) logp + (1 +p) log C
j—1 =
> >p/log Dy —2logp Y (j — k)p* +1ogC > p.
k=0 k=0
Using the well-known formulas
j-1 : j-1 :
. 1 (ptt—p woop—1
A — ( —j) amd Y=l (2.37)
k=0 p=1\ p-1 k=0 p—1
we obtain
21 i+l - logC
log D; > p'log Dy — —2L (2 P i)+ -1 oaC
1 p—1 p—1

- 2plogp  log C 2jlogp = 2plogp log C
=p’ | log Dy — — .
(p—12 p-1 p—1  (p-1)2 p-1

loga P

Slogp — poT° Then, for any

Let us denote by jo = jo(n,p, k, ) € N the smallest integer greater than
J = Jjo we have

. 2pl log C , ~ ,
log D; > p’ <1og Do — (pp _Of)pQ + pof 1) = ' log (Kp~ @/ @=V" G @=Der) = pilog (Eper)
(2.38)

where Ey = Kp~(2p)/(>=1)* C1/(=1)  Combining (2.32), (2.35), (2.36) and (2.38), for j > jo and t > T}
it holds

Uo(t) > exp (p’ log (EoeP)) t~% (t — Ty)>
= exp <P7 (log (Eoe?) — (ﬁ + ao) logt + (;%1 + bo> log(t — Tl))) e/ (P=1 (¢ — ) =B/ (=1,
For ¢t > 217, we have log(t — T1) > log(t/2), so for j > jo
Uo(t) = exp <p7 (log (Eoe?) + (i_fff + by — ao) logt — (% + bo) log 2)) e/ (P=1 (¢ — ) =B/ (P 1)

— exp <pj (log (2—170—5/(17—1) Eoert 5ot ))) o/ =D (¢ — ) =B/ (1), (2.39)
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where for the exponent of ¢ in the last equality we used

f,%i”rbo—ao:i (I—kn+1-krn-1)+5+2-(1-k22t+4)p

p—1
= - =h - (=P ) p
=t {1k (0 -zt p - (- k2t gE) )
= ), (2.40)

p—1
Note that 8(n, k, u, p) is a positive quantity for p < pg (k, n+ ﬁ) Let us fix ¢g > 0 sufficiently small
so that

p(p—1) 1_bop—1)+8

__pp=l) __p—l
£ 0(n,k,u,p) > 2 WEg(n,k,u,P) 7.

(p— n _ _p=1)
Then, for any ¢ € (0,¢0] and for ¢ > 2(b0(1’_1)+5)/9(”’k’“’p)EO (p=1)/0(nkotisp) =50 505 it results

0(n,k,p,p)

t> 2T and 9 bo=B/(=V) B Pt~ -1 > 1,

also, letting 7 — oo in (2.39) it turns out that Up(¢) blows up. Consequently, we proved the blowing-up
of Uy in finite time for any ¢ € (0, ] whenever p < pg (k’, n+ ﬁ) and, moreover, as byproduct we

found the upper bound estimate for the lifespan T'(¢) < 57% as well.

So far we applied only the lower bound estimate in (2.30) for Uy. Nevertheless, we also proved
another lower bound estimate for Uy, namely, (2.21). Using (2.21) instead of (2.30), the initial values
for the parameters in (2.32) are ag = bg = 0 and Dy =~ €. Repeating the computations analogously as
in the previous case and using

log D; > p’ log (E¢)

for 7 > j1, where j; is a suitable nonnegative integer and F; is a suitable positive constant, in place of
(2.38) and

ﬁ%‘f+bo—a0:p—31—(1—k)n

instead of (2.40), we obtain immediately the blow-up of Uy in finite time for p < p;(k,n) and the
corresponding upper bound estimate for the lifespan in (1.9).

3. Critical case: part I

In order to study the critical case p = pg (k, n+ ﬁ), we will follow an approach which is based on the
technique introduced in [38] and subsequently applied to different frameworks in [39, 31, 32, 23, 3, 4, 29].

From (2.39) it is clear that we can no longer employ Uy as functional to study the blow-up
dynamic. Therefore, we need to sharpen the choice of the functional. More precisely, we are going to
consider a weighted space average of a local in time solution to (1.4). Hence, the blow-up result will
be proved by applying the so-called slicing procedure in an iteration argument to show a sequence of
lower bound estimates for the above mentioned functional. Throughout this section we work under the
assumptions of Theorem 1.4.

The section is organized as follows: in Section 3.1 we determine a pair of auxiliary functions which
have a fundamental role in the definition of the time-dependent functional and in the determination of
the iteration frame, while in Section 3.2 we establish some fundamental properties for these functions;
finally, in Section 3.3 we determine the iteration frame for the weighted space average whose dynamic
provides the blow-up result.
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3.1. Auxiliary functions

In this section, we introduce two auxiliary functions (see &, and 7, below). These auxiliary functions
represent a generalization of the solution to the classical free wave equation given in [41] and are
defined by using the remarkable function ¢ introduced in [40], that we have already used in the section
for the subcritical case (the definition of this function is given in (2.13)).

According to our purpose of introducing the auxiliary functions, we begin by determining the
solutions y; = y;(t, s; A\, k, ), j € {0, 1} of the non-autonomous, parameter-dependent, ordinary Cauchy
problems

8)52y]<t751 )‘7 k?“’) - )\2t72kyj(ta S;/\7k7,u) + Mtilyj(ta 53 )\7]{:’/-’(') = 07 t> S,
’y]'(S,S; )\a k7u> = 50]" (341)
Oryj(s, ;A k1) = 615,

where J;; denotes the Kronecker delta, s > 1 is the initial time and A > 0 is a real parameter. To find
a system of independent solutions to

d?y dy
— %2k 1 42
¥ y+ptT =0 (3.42)
we start by performing the change of variable 7 = 7(¢; A, k) = A¢x(¢t). By the straightforward relations
dy rdy d?y 2 —de Y 1y
—Z = N\""= —= =\t — Mkt =
dt dr’ de? dr2 dr’
it follows that y solves (3.42) if and only if
d*y  p—kdy
- _ =0. 4
R r e (3.43)

Carrying out the transformation y(7) = 77w(7) with v = v(k, u) = ﬁ, it turns out that y solves

(3.43) if and only if w solves the modified Bessel equation of order v
,d? d
T d—f +7 dw —(P+7m)w=0. (3.44)
Employing the modified Bessel function of first and second kind of order v, denoted, respectively, by
I,(7) and K, (1), as independent solutions to (3.44), then, we obtain

Vot Ak, p) = 7L, (7) = (A (8))" Lo (Adk(1)),
Vi(t; Ak, 1) = 7Ky (1) = (Adr(t)) Ky (Adr (1))
as basis for the space of solutions to (3.42).
Proposition 3.1. The functions
yolt s Ak, 1) = Agi(s) 8“7 17 [, 1 (Adk(5)) Ky A () + K1 Aok (s) L (Age(1)],  (3.45)
y(t s k) = (1= k) ~1s 73545 K, (An () I (A (1) — LAk () Ky (Agw ()], (3.46)

solve the Cauchy problems (3.41) for j =0 and j = 1, respectively, where v = ﬁ and 1,,K, denote
the modified Bessel function of order v of the first and second kind, respectively.

Proof. Since we proved that Vg, V4 form a system of independent solutions to (3.42), we may express
the solutions to (3.41) as linear combinations of V), V; in the following way
Yi(t,si A k) = aj(s; A k) Vo (s A K, i) + b (s5 A ks i) V(6 Ay ke, o) (3.47)

for suitable coefficients a;(s; A\, k, i), b;j(s; A\, k, i), with j € {0,1}.
We can describe the initial condltlons diyj(s,s; A\, k) = &;; through the system

VO(S;)‘v kau) V1(87 )‘a kaﬂ) aO(S;)\v kvu) al(s;)\v ]ﬁﬂ) =7
atVO(S; )\Jﬁﬂ) 8t‘/1(57A7k’:u’) b0<8;)\a kau) bl(S;)\, k,ll/) N
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where I denotes the identity matrix. Also, to determine the coefficients in (3.47), we calculate the
inverse matrix

VolsiA ki) ValsiA k) )
8t‘/0<s;)\7k7:u’) at‘/l(s7)‘7kmu)

— . -1 atvl(s;AJ%:u) —‘/1(8;)\,]{”&)
- (OW(VOa Vl)(sa )‘a k)ﬂ)) < —6tV0(s; )\’ kvﬂ) V()(S; )\7 ka.u) ) (348)

where W (Vp, V1) denotes the Wronskian of Vg, V1. Next, we compute explicitly the function W (Vp, V7).
Thanks to

OVo(t; Ak, 1) = v( Ak ()" A (1) L Ak (1)) + (A (1))” T, (Adio (1)) Ay, (8),
VA A K, ) = v(Ak (1) A (1) K (Ar (1)) + (A (8))” K, (Adk (1)) A, (1),
recalling ¢ (t) =t % and 2v — 1 = ’f T, we can express W (Vp, V1) as follows:

W (Vo Vi) (s Xk, 1) = (A ()™ (A (D) {KL (A (8)) T (Ao (1)) — I, (A (£)) Ko (Are (1)) }
= (Ar(t)* (A ( )W (1, Ky ) (Adr (1) = —(Aon ()~ (A (¢))
A (B (0)* T (1) = — e AT

where ¢, = (1 — k)li%g and in the third equality we used the value of the Wronskian of 1,,, K,

WL K)() = 1) 52 ()~ Ko(2) S22 =

z

Plugging the previously determined representation of W (Vp, V1) in (3.48), we have

ao(S;/\,k,,U/) CLl(S;/\,k,,U/) —c )\—21/8;1, —(9,5‘/1(5; )\a kau) ‘/1(57 )\7k’7ﬂ)
bo(s; A k1) bu(s; Ak, o) o OVo(si\ k) —Va(sihkp) )

Let us begin by showing (3.45). Using the above representation of ag(s; A, k, 1), bo(s; A, k, 1) in (3.47),
we find

yo(t, s; A\, Kk, p) = ck7#A72”s“{8tV0(S'A k /L)Vl(t')\ kop) — O Vi(s; A b, ) Vo(ts A k) }
= Cppu v 8" (5) (1) H( ¢k )L (Adr(s)) Ko (Aok (1)) — Ko (Apk(5)) T (Adi (1)) }
+ o A8 03, (5) (Dn(9))" (D1 (1)) {1, (Apr (5)) Ku (Apr(t)) — K, (Adk(5)) I (Adw (1)) }-

Using the following recursive relations for the derivatives of the modified Bessel functions

o1, v
22(5) = Y 1,() + Loa2)
0K, v

02 ( )= S Ku(Z) *Ku—l(z),

there is a cancellation in the last relation, so, we arrive at

Yo (t7 53 )‘7 ka ‘U,) = Ck,n A 8M¢;c<8)(¢k(s)¢k (t))u{Il/—l (Ad)k(s)) Ki/(>‘¢k (t)) + Ky—1(>‘¢k( )\¢k }
3.49)
Thanks to
p—1 1—p
8" 31 () (G ()90 (D) = (L= k) 16" 7H(st) 3" = g4 (s)s" 5 ¢2
from (3.49) it follows immediately (3.45). Let us show now the representation for y;. Plugging the
above determined expressions for a1 (s; A, k, 1), b1(s; A\, k, ) in (3.47), we get

y1(t, 850, k) = ck7ﬂ)\_2”s”{‘/1(s; Ak ,u)VO(t' Ak, p) = Vo(ss Ak, p) Vit Ak, i) }
= A 8" (A1 (3))” (A (8))” { Ko (Adr () I (Ao (1)) — L (A () Ko (A (1)) §
= ckus (0r(5) 01 (1) {Ku APk () L (A (1)) — L (Ar(s)) K (Abie (1)) }- (3.50)
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+p

Hence, due to ci 8" (dr(s)or(t))” = (1 — k)’lsthkT“, from (3.50) it results (3.46). The proof is
complete. O

Lemma 3.2. Let yo, y1 be the functions defined in (3.45) and (3.46), respectively. Then, the following
identities are satisfied for anyt > s > 1

oy

T(ta 3 )\7 ka :U’) = _yo(ta S; /\a kv M) + u871y1 (ta S5 )‘a k, /1/)7 (351)
0? 0
8321 (t,s; N ko) — N2s™ 2Ry (t, s\ ke, ) — usﬂ%(t, s; Nk, ) + s 2y (t s N k) = 0. (3.52)

Remark 3.3. As the operator 02 —\2s=2F —ps=10,+us~2 is the formal adjoint of 02 —\2t=2*+-ut =10, in
particular, (3.51) and (3.52) tell us that y; solves also the adjoint problem to (3.42) with final conditions
(07 _1> .

Proof. Let us introduce the pair of independent solutions to (3.42)
ZO(ta )‘7 k, M) = yO(tv L; )‘7 k, M),
Zl(ta )‘7 k? /1/) = yl(tv 11 )‘7 ka /1’)

Since the Wronskian W (29, 21)(t; A, k, i) solves the differential equation W' (zq,21) = —ut = W (29, 21)
with initial condition W (29, 21)(1; A, k, ) = 1, then, W (zo, 21)(¢; A, k, p) = t~#. Therefore, repeating
similar computations as in the proof of Proposition 3.1, we may show the representations

yO(ta S5 )‘7 kv ,u) = st {Zi (8; )‘7 ka M)ZO(ta )‘a k) :U’) - Z6<8ﬂ )‘7 ka M)zl (tv )‘a k) :U’)} )

yl(ta S3 >‘7 k? ,LL) = st {ZO(S; )‘7 ka ﬂ)zl(t’ )‘a k: N‘) — 21 (3; )‘7 ka M)Zo(t» /\a k: :U’)} .

Let us prove (3.51). Differentiating the second one of the previous representations with respect to s,
we find

%(t, s\ k) = pst1 {zo(8; M, ky )z (G0, k1) — z1(s; M Ky p)zo (85 A, by ) }

Js
+ s {36(87 )‘a ka M)Zl(t; )" k’ M) - Z/l(*g; )‘7 ka M)Zo(t; /\’ kv :u)}
= :u’silyl(ta S A, k7 ,U,) - Z/O(t7 S /\7 k7 ,U,)
On the other hand, due to the fact that zg, 21 satisfy (3.42), then,

823/1
0s?

(t, 530 k) = s {20 (s; A\ ey )21 (5 X Ky ) — 27 (s 0, Ky ) zo (5 A ey 1) }

+2us" G (s M Ky )21 (8 N Ky 1) — 21 (850 K, )20 (6 A Ky 1)}

+ (i — 1)s* 72 {z0(s; A by )21 (6 A, K, ) — 21 (550, K, )20 (65 A Ky )}
= s"{ [/\28_%20(5; Nk, ) — s~ 2l (s k, u)] z21(t; Ak, )

— W7z (si M ki) — s T 2 (5500 K, )] 20(65 A K, o) }

+ 2us" T {2 (s A Ky )21 (B A by ) — 25 (s3 A\ ke, ) zo (6 A, K, ) }

+ (i — 1) 72 {z0(s; A by )21 (6 A, K, ) — 21(s5 0, K, )20 (65 A K,y )}
= /\Zs_%s"{zo(s; k)2 (G A k) — 21 (s Mk, pw)zo(ts X k) }

+ st T2 (50 ey )z (BN Ky ) — 21 (85 M ks )20 (85 A\ Ky )}

+ = 1) 72 {z0(s; A, K, )21 (85 A, K, 1) — 21(s; X b, i) 20 (6 A K, o) }
= X257 2Ry (t, s N ey ) — s Ry (t, s N Ky ) + (e — 1)s™ 2y (8, 550, k, o).
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Applying (3.51), from the last chain of equalities we get

(t, 530 k) = Ns ™2 yi (¢, 8 0, b, ) + ps ™! (%yl(t, ;A k) — s~y (t s A K,y u))
S

+ (s = 1)s 2y (t, 50k, )

0
= Ny (s A k) + s S (s R) = sy (ks Ak ).

Thus, we proved (3.52) too. This completes the proof. |

Proposition 3.4. Let ug € H'(R") and uy € L*(R™) be functions such that suppu; C Bg for j =0,1
and for some R > 0 and let A > 0 be a parameter. Let u be a local in time energy solution to (1.4) on
[1,T) according to Definition 1.1. Then, the following integral identity is satisfied for any t € [1,T)

/n u(t,x)go)\(x)dxzsyo(tl;/\,kz)/ uo(x)gp)\(x)dw+€y1(t,1;)\,k)/ up (z)px(x) dz

n n

t
+/ y1(t, 83\, k:)/ lu(s, z)|Pox(x) dzds, (3.53)
1 n
where px(x) = @(Ax) and ¢ is defined by (2.13).

Proof. Assuming ug,u; compactly supported, we can consider a test function ¢ € € ([1,7) x R") in
Definition 1.1 according to Remark 1.2. Hence, we take (s, ) = y1(¢, 8; A, k, u)ox(z) (here ¢, A can be
treated as fixed parameters). Consequently, 1 satisfies

Ut x) =GNk pea(@) =0, P(lx) =, LA K pea(),
Ps(t,x) = Duyr (15 A by whpa (@) = (b ya (8,65 M, Ky 1) — yo(t, 5 A, K, 1)) () = —pa(a),
¥s(1,2) = Osyr (, L Ak, p)oa(@) = (pyr (LA K, 1) — yo(E, 13 AL K, i) @a(),
and
Yss(s, ) — s AP (s, x) — 10s(s 1ap(s,x)) = (83 — N7k s, + us_z) y1(t, s; N Ky p)oa(x)
= O’
where we used (3.51), (3.52) and the property Ay = A2p,. Then, employing the above defined 1 in
(1.8), we find immediately (3.53). This completes the proof. O

Proposition 3.5. Let yo, y1 be the functions defined in (3.45) and (3.46), respectively. Then, the
following estimates are satisfied for anyt > s > 1
p—k k—p .
boltssi k1) > 5“5 cosh (@(t) — 0u(s)  if € [2— o0, (3.54)
bk bow sinh ()\(¢k(t) - ¢k(3)))
A

Proof. The proof of the inequalities (3.54) and (3.55) is based on the following minimum type principle:
let w=w(t,s;\ k,p) be a solution of the Cauchy problem

yi(t, ss A k,p) = s if we0,k]U[2 -k, 00). (3.55)

{6?10 — N2t7 %+ pt 0w =h, fort>s>1, (3.56)

w(s) = wg, dw(s) = w1,

where h = h(t,s; A\, k, 1) is a continuous function; if h > 0 and Wy = w1 =0 (i.e. w is a supersolution
of the homogeneous problem with trivial initial conditions), then, w(t, s; A\, k, u) = 0 for any t > s.

In order to prove this minimum principle, we apply the continuous dependence on initial conditions
(note that for ¢ > 1 the functions t~2* and ut~! are smooth). Indeed, if we denote by w, the solution
to (3.56) with @y = € > 0 and w; = 0, then, w, solves the integral equation

t T
we(t, s; N\ k1) = €+ / 7-_”/ ot (Aza_zkwe(a, s$; Nk, u) 4+ h(o, s\ k, u))dcr dr.
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By contradiction, one can prove easily that we (¢, s; A, k, ) > 0 for any ¢ > s. Hence, by the continuous
dependence on initial data, letting € — 0, we find that w(t, s; A\, k, u) > 0 for any ¢ > s.
Let us prove the validity of (3.55). Denoting by wy = w1 (¢, s; A, k, ) the function on the right-hand
side of (3.55), we find immediately w1 (s, s; A, k, u) = 0 and Grws (s, 85\, k, u) = 1. Moreover,
agwl (tv 57)‘3 k) ,U,)

=\~

k+p k— [L[

Bt (552 — 1) 2 sinh (A(9r(t) — 9(s))

+ (k= )t cosh (A(dk(t) — @1 (s))) A ()

+ sinh (A(@ (t) — d1(s))) (MG}, (1))? + cosh (A(x(t) — ¢k(5)))k¢§é(t)}

- [’%ﬂ (’“*Tﬂ - 1) 2 4 A?r?ﬂ wa(t, 53 M\, o) — ps 2471 cosh (M@ () — dr(s))

and

Drwn(t,si Xk ) = AT [ 4 sinn (A(aak(t) — 61(s))) + A" cosh (A(@x(t) — ¢1(5))) |

=k T w (t, s Mk u)—i—s Pl cosh( (Dr(t) — di(s)))
imply that
0wy (t, 550, k) — Nt 2wy (8, 5\, b, ) + pt ™ Opws (t, 550,k p) = (’“**‘ 1) wi (t, 5\, k, 1)
< 0,

where in the last step we employ the assumption u ¢ (k,2 — k) to guarantee that the multiplicative
constant is negative. Therefore, y; — w; is a supersolution of (3.56) with h = 0 and @wy = w; = 0. Thus,
applying the minimum principle we have that (y3 —w1)(¢, s; A, k) > 0 for any ¢t > s, that is, we showed
(3.55).

In a completely analogous way, one can prove (3.54), repeating the previous argument based on the
minimum principle with wq(t, s; A, k, ) = s“T°¢"7" cosh (A(@r(t) — ¢x(s))) in place of wy (¢, s; A, k, 1)
and yp in place of y;, respectively. However, in order to guarantee that wq(s,s; A, k, ) = 1 and
Orwo(s, s; A k, 1) < 0, we are forced to require p > k, which provides, together with the condition
p ¢ (k,2—k) that is necessary to ensure that wy is actually a subsolution of the homogeneous equation,
the range for p in (3.54). O

Remark 3.6. Although (3.54) might be restrictive from the viewpoint of the range for 1 in the statement
of Theorem 1.4, we can actually overcome this difficulty by showing a transformation which allows
to link the case p € [0, k] to the case p € [2 — k, 2], when a lower bound estimate for yo is available.
Indeed, if we perform the transformation v = v(t,x) = t*~tu(t,z), then, u is a solution to (1.4) if and
only if v solves

vip — t7R AU+ (2 — )ty = tAWED P e R te (1,T),
v(1,z) = eup(x) x € R™, (3.57)
ur(l,z) = eur(x) + (1 — pw)uo(z) x € R™

Let us point out that in (3.57) a time-dependent factor which decays with polynomial order appears

in the nonlinear term on the right-hand side. Therefore, we will reduce the case p € [0, k] to the case
pw>=>2—k, up to the time-dependent factor t =M ®=1) in the nonlinearity.

We can introduce now for £ > s > 1 and « € R” the definition of the following auziliary function
Ao
&(t,s,xk,pn) = / —A(Ak(t )yo(t,s;/\,k,u) ox(Z)ATdA, (3.58)
0
nq(t, s,z k, ) /)\O —A(Ax(t +R)yl(ts—/\k'u) ox(z)AdX (3.59)
e 0 Ox(t) — ox(s) * ’ '
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where ¢ > —1, A\g > 0 is a fixed parameter and Ay, is defined by (1.6).
Combining Proposition 3.4 and (3.58) and (3.59), we establish a fundamental equality, whose role
will be crucial in the next sections in order to prove the blow-up result.

Corollary 3.7. Let ug € H'(R™) and uy € L*(R™) such that suppu; C Br for j = 0,1 and for some
R > 0. Let u be a local in time energy solution to (1.4) on [1,T) according to Definition 1.1. Let ¢ > —1
and let &4(t, s, 3 k), ng(t, 5,25 k) be the functions defined by (3.58) and (3.59), respectively. Then,

/n u(t,x) &gt t,xs k, p) doe = 5/n uo(z) (L, 1, 23k, ) do
e (oult) = au1) [ @)yt ik do
+/1 (Pr(t) — dr(s)) /]Rn [u(s, z)|Png(t, s, x; k, p) da ds (3.60)

foranyte[1,T).

Proof. Multiplying both sides of (3.53) by e MAx(M+R)I\a integrating with respect to A over [0, o]
and applying Fubini’s theorem, we get easily (3.60). O

3.2. Properties of the auxiliary functions

In this section, we establish lower and upper bound estimates for the auxiliary functions &, 7, under
suitable assumptions on ¢g. In the lower bound estimates, we may restrict our considerations to the
case u > 2 — k thanks to Remark 3.6, even though the estimate for 1, that will be proved thanks to
(3.55) clearly would be true also for p € [0, k].

Lemma 3.8. Letn > 1, k € [0,1), u =2 —k and \g > 0. If we assume ¢ > —1, then, fort > s> 1
and |z| < Ag(s) + R the following lower bound estimates are satisfied:
E,(t, s, my ke, 1) > Bos 7 t 2 (Ay(s)) "7 (3.61)
rtk k*u

= (Ai(1) " {Ar(s)) 7 (3.62)

Here By, By are positive constants depending only on A, q, R, k and we employ the notation (y) = 3+|y|.

ng(t,s,x;k, 1) > Bys 2

Proof. We adapt the main ideas in the proof of Lemma 3.1 in [38] to our model. Since

()~ el < (@) S (Jal) =T el (3.63)
holds for any z € R™, there exists a constant B = B(\g, R, k) > 0 independent of A\ and s such that
B < R inf N inf 67)‘(‘4’“(5)+R)g0)\(x).

A ratay Tty ) 1S AR (TR

Let us begin by proving (3.61). Using the lower bound estimate in (3.54), shrinking the domain of
integration in (3.58) to {(fli\ﬁ’ %} and applying the previous inequality, we arrive at

i wey [Pro/(Ax(s))
§q(t,s,$;k,u) > st / e~ MAR(D)—Ak(5)) cosh ()\(gbk(t) _ ¢k(8)))6—/\(Ak(s)+R)(p/\(m))\q dx
A

o/ {Ax(s))
. N 2)\0/<Ak(9)>
> BsiTt i e MARM A1) cosh (A(g (1) — Pr(s))) AT dA

Xo/(Ak(s))
2X0/ (A (s))

g / iy 1 +e—2)\(¢k(t)_¢k(s))) A7 d)
2/\0/(Ak(s wek hp B(24F1 — 1))\2 T

> 5T / Ny = st i Bl Ao (AR(s)) "7
Mo/ (An(s 2(g+1)
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Repeating similar steps as before, thanks to (3.55) we obtain
. _, [2Po/{Ak(s)) h
'rlq(t,s’x; k,u) > s ;kﬁ%/ —)\(Ak(t) Ak (s)) sin E ((?k)( ) (?k;;))) e_A(Ak(S)""R)So/\((E))\qd)\
Ao/ (Ax(s)) APk (t) — Pr(s

ooy [2P0/{AR(8)) 1 _ o—2M(¢r(H)—¢r(s))
tT /
Xo/(Ax(s)) Bk (t) — dr(s)

‘:
vl
Eal

PP

\Y
|
V)

ptk k—p 1 — e72/\° ¢k<(zt4) (f%(S) 2Xo0/(Ak(s))
> gSTtT / A1
Or(t) = dr(s)  Jao/(an(s)
O3 (1) =63 ()
B(27 — 1)\ ;L+k keu 1 _e*”" (A% ()
= BN gt o)

2 Gk(t) — Pr(s)

with obvious modifications in the case ¢ = 0. The previous inequality implies (3.62), provided that we
show the validity of the inequality

oy PRk ()
1 — o 20T RA )

Pk(t) — dr(s)

Hence, we need to prove this inequality. For ¢ (¢) — ¢r(s) > ﬁ(Ak(s)% it holds

2 (Ar®) ™

oy bk(D—dk(s)
e 2)\0 <Ak(s)> 2 1 _ e*l

and, consequently,

_ bp (8)—Pp (s)
1 — e 2o~ @0

bk (t) — dr(s)

On the other hand, when ¢ (t) — ¢r(s) < 2)\0 (Ag(s)), using the estimate 1 —e™7 > /2 for o € [0, 1],
we get easily

> (1) — dils) ™ = A7 = (A1)

oy (=g (o)
1 — o 20 TTE )y o o

> > .
Pr(t) — di(s) (Ar(s)) ~ (Ar(?))
Therefore, the proof of (3.62) is completed. |

Next we prove an upper bound estimate in the special case s = t.

Lemma 3.9. Letn > 1, k€[0,1), p >0 and Ao > 0. If we assume q > (n — 3)/2, then, fort > 1 and
|z| < Ai(t) + R the followmg upper bound estimate holds:

Eq(t 1, b, 1) < Ba{AR(D) ™57 (Ax(t) — [af) = 2. (3.64)

Here By is a positive constant depending only on Mg, q, R,k and (y) denotes the same function as in
the statement of Lemma 3.8.

Proof. Due to the representation
Ao
&t t, a5k, pr) =/ e MARITR) o (2) AT d,
0

the proof is exactly the same as in [29, Lemma 2.7]. O



Blow-up results for semilinear damped wave equations in Einstein-de Sitter spacetime 19

3.3. Derivation of the iteration frame

In this section, we define the time-dependent functional whose dynamic is studied in order to prove the
blow-up result. Then, we derive the iteration frame for this functional and a first lower bound estimate
of logarithmic type.

For ¢t > 1 we introduce the functional

) =7 | ult,) &t t, a5k, p) da (3.65)
Rn

for some ¢ > (n — 3)/2.
From (3.60), (3.61) and (3.62), it follows
Ax(t)
Ut 2305/ ug(x dx—&—Blsi/ uy(x) dz.
(t () Gy Lm@
If we assume both ug, u; nonnegative and nontrivial, then, we find that
U(t) 2 e (3.66)

for any ¢ € [1,T), where the unexpressed multiplicative constant depends on ug,u;. In the next
proposition, we derive the iteration frame for the functional U for a given value of q.

Proposition 3.10. Letn > 1, k € [0,1) and p € [0,k] U [2 — k,00). Let us consider ug € H*(R™) and
uy € L?(R™) such that supp u; C Bg for j = 0,1 and for some R > 0 and let u be a local in time energy
solution to (1.4) on [1,T) according to Definition 1.1. If U is defined by (3.65) with q = (n—1)/2—1/p,
then, there exists a positive constant C' = C(n,p, R, k, i) such that

() > o)™ [ O (rog(anen) T @opas (3.67)

forany t e (1,T).

Proof. By (3.65), applying Hélder’s inequality we find

— 1/p -k v’
i) < ([ enpntssipa) ([ (esmbl,,
n Briay(s) (Uq(t,syx;k,u))

1/p

—1 —(p-1)
(gq(sysax;kmu’))p/(p ) d )
X .

k—p
lu(s, x)[Png(t, s,z k, p) do > (ST%(S))p (/ —
/n Bria,(s) (nq(t,s,x;k,,u))l/(p 2

(3.68)

Let us determine an upper bound for the integral on the right-hand side of (3.68). By using (3.64) and
(3.62), we obtain

(6,05, 5,5k, u))p/(p_l)
/ -1 9@
BR+Ak(s) (nq(tasv‘r; k?M))

<BTTBI TS RO ()T AT 0T [ ()~ ) 0

Brtay(s)

n—1_ 1

1 _pP_ —k n—
< By TBY s 2 0431 (A (1)) 7T (Ag(s)) 7T TP / (Ag(s) — o) dz
Bryag(s)

_ 1 _p_ N y—k n— n—
< B p_lBg_ls——zgptﬁ)t—ggp_’;) (AR(1) 7T (Ag(s)) T AT P = D401 16004, (s)),
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where in the second inequality we used value of ¢ to get exactly —1 as power for the function in the
integral. Consequently, from (3.68) we have

/ lu(s, x)|Png(t, s, z; k, p) do

(" “au(s))” Mt’%“<Ak<t>>*1<Ak<s)>—%“”—”+%(1og<Ak<s)>)*“’*”
T (AR(0) s E TSP (4 ()T 00T (log( Ay () 7Y ().

Combining the previous lower bound estimate and (3.60), we arrive at

Vv

vV

p—k ¢
) > 15 [ (on0) = ons)) [ futs. o)t s,aikop) dods

> (A [ — bi(s)) s5@TDFEA-D) (4, (5)) T (- D3 (Gu(s)) s

> (A1) / (61(8) — Bi(s)) s (Ax(s)) TR
L s sy anoner (W)

> (A4(t)) /lwk(t)—m(s))mk(s)w T (ogtAn(o) @1

> (A1) /1t<¢k<t>—¢k<s>><Ak<s>>("21*25 ) (st atiti) v ()

(log(Ax(s))) "™

where in third step we used s = (1 — k)ﬁ(Ak(s) + ¢k(1))ﬁ ~ (Ak(s)>ﬁ for s > 1. Since
p=po(k,n+ &) from (1.5) it follows

n— —k n— +k k
_<Tl+72€17k))p+(Tl_'—Qétlfk))_'—;lo:_l_ﬂ:_ﬁ’ (3.69)

then, plugging (3.69) in the above lower bound estimate for U(t) it yields
) 2 () [ 0010) = on(s) (A(s) ™ (ot u(9) " ()" ds
o [ OO (o4 s (g,

which is exactly (3.67). Therefore, the proof is completed. |

Lemma 3.11. Letn > 1, k € [0,1) and p € [0,k] U [2 — k,00). Let us consider ug € H'(R") and
u; € L2(R™) such that supp u; C Bg for j = 0,1 and for some R > 0 and let u be a local in time
energy solution to (1.4) on [1,T) according to Definition 1.1. Then, there exists a positive constant
K = K(ug,u1,n,p, R, k, ) such that the lower bound estimate

(k—p)p

/ Jut, z)P do > KeP (A ()"~ D0 2w (3.70)

holds for any t € (1,T).

Proof. We modify of the proof of Lemma 5.1 in [38] accordingly to our model. Let us fix ¢ >
(n—3)/2+4 1/p’. Combining (3.65), (3.66) and Holder’s inequality, it results

et' T £ < ¢ TU(L) = / u(t,x)&(t, t, x; k, 1) do

1/p , 1/17/
< (/ |u(t, x)|P dx) (/ (& (¢, t, ; k,u)p dm) .
" Bryay )
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Hence,

—(p—-1)
/ lu(t,z)|P dz = ePytEtp (/ (&t t a5k, u)p dx) . (3.71)
" Brya )

Let us determine an upper bound estimates for the integral of &,(t,¢, x; k, u)p/. By using (3.64), we
have

1

/ (&t ) do < (Au(8) T / (Ap(t) = [e]) "9 2700 g
Briag ) Bryag, ()

n—1_17 R+Ak( ) - ’ ,
S (k)7 / P Ag(t) — )32 g
0

S (A(t))”

Performing the change of variable Ay (t) — r = p, one gets

R+Ay (t) , ,
- / (Ap(t) — 1) (=320 g
0

: .y Au(t) o
/ (&gt t, 2 k,u)p dz < (Ak(t)leP +n—1 / (34 |o|) P3P /2=Pla gy
Bryay ) R

< (Ag()) TP

because of (n — 3)p’/2 — p'q < —1. If we combine this upper bound estimates for the integral of
&t t,xik, ,u)p/, the inequality (3.71) and we employ ¢ ~ (A;Jt))ﬁ for t > 1, then, we arrive at (3.70).
This completes the proof. O

In Proposition 3.10, we derive the iteration frame for U. In the next result, we shall prove a first
lower bound estimate of logarithmic type for U, as base case for the iteration argument.

Proposition 3.12. Let n > 1, k € [0,1) and p € [0,k] U[2 — k,00). Let us consider ug € H*(R")
and u; € L*(R™) such that supp u; C Br for j = 0,1 and for some R > 0 and let u be a local in
time energy solution to (1.4) on [1,T) according to Definition 1.1. Let U be defined by (3.65) with
g=(n—1)/2—1/p. Then, fort > 3/2 the functional U(t) fulfills

WU(t) > MePlog (%), (3.72)
where the positive constant M depends on ug,u1,n,p, R, k, p.

Proof. From (3.60) it results

0> 5 [0ul) = 0u(s) [ fuls. o).k do s

Consequently, applying (3.62) first and then (3.70), we find
t
UE) > BuAn() ™ [ (0n(0) = 0n(6) s (Au(e) 70 [ Juls,a) dods
1 n

> BiKeP (A1)~ /t(¢k(t) — Gi(s)) s°T (Ay(s)) "I DO-5)+57255 4
1

¢ _putk n—1 10, _pyy (F—pw)p
>€p<Ak(t)>_1/ (6k(t) — Pr()){Ax(s)) 20 = Tt = DU=2H5050 g
1

p—k

2 ()™ [ 0ult) = an(a(an(s) (TR (5 ) 1 g

> &P (A (1)) / (61(t) — b)) (Ar(s)) T ds 2 eP{ Ayt / oelt) = A(s) 4
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Integrating by parts, we obtain

/t Drlt) = dils) 4o _ (0x(t) = (s)) log s

S

S

=t t
+/ ¢ (s)log sds
s=1 1

t t
:/ s *logsds > t_k/ log s ds.
1 1

Consequently, for t > 3/2

t

WU(t) > eP(Ap(t))~1tF /t logsds > sp<Ak(t)>‘1t‘k/ log sds > (1/3)eP(Ax(t)) "1t 7% log(2t/3)

1 2t/3
2 €”log(2t/3),

where in the last line we applied ¢ =~ <Ak(t)>ﬁ for ¢ > 1. Thus, the proof is over. |

In order to conclude the proof of Theorem 1.4 it remains to use an iteration argument together
with a slicing procedure for the domain of integration. This procedure consists in determining a
sequence of lower bound estimates for U(t) (indexes by j € N) and, then, proving that U(¢) may not
be finite for ¢ over a certain e-dependent threshold by taking the limit as j — oo. Since the iteration
frame (3.67) and the first lower bound estimate (3.72) are formally identical to those in [29, Section
2.3] (of course, for different values of the critical exponent p), the iteration argument can be rewritten
verbatim as in [29, Section 2.4].

Finally, we show how the previous steps can be adapted to the treatment of the case u € [0, k].
According to Remark 3.6 , through the transformation v(t,z) = t*~u(t,z), we may consider the
transformed semilinear Cauchy problem (3.57) for v. Note that vg = ug and v1 = uy + (1 — p)ug satisfies
the same assumptions for ug and u; in the statement of Theorem 1.4 in this case (nonnegativeness
and nontriviality, compactly supported and belongingness to the energy space H!(R™) x L?(R")).
Of course, we may introduce the auxiliary function &, (¢, s, z; k,2 — p), &, (t, s, 3k, 2 — p1) as in (3.58),
(3.59) replacing p by 2 — u. In Corollary 3.7, nevertheless, we have to replace the fundamental identity
(3.53) by

/ v(t,x) &t t ok, 2 — p)da = 5/ vo(x)&q(t, 1,25 k,2 — p) da

n

+ sAk(t)/ vi(z)ng(t, s,z k,2 — p) da

n

t
+ / (P (1) — pr(5))s =P [ |o(s, 2) [P, (t, s, 25 k, 2 — i) da ds.

1 R
As we have already pointed out in Remark 3.6, the estimates in (3.54) and (3.55) hold true in this case
with 2 — p instead of p (we recall that this was the actual reason to consider the transformed problem
in place of the original one). Moreover, also the lower bound estimate in (3.70) is valid for v, provided
that we replace p by 2 — p. Accordingly to what we have just remarked, the suitable time-dependent
functional to study for the transformed problem is

V() =175 | o(t,0)&(t k2 — p) da.
R’n
In fact, V satisfies V' (t) 2 € for t € [1,T) and, furthermore, it is possible to derive for ¥ completely
analogous iteration frame and first logarithmic lower bound, respectively, as the ones for U in (3.67) and
(3.72), respectively. We point out that both for the iteration frame and for the first logarithmic lower
bound estimate the time-dependent factor ¢(!=#) (=1 in the nonlinearity compensates the modifications
due to the replacement of p by 2 — i in the proofs of Propositions 3.10 and 3.12.
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4. Critical case: part 11

In Section 2, we derived the upper bound for the lifespan in the subcritical case, whereas in Section 3
we studied the critical case p = pg (k, n+ ﬁ) It remains to consider the critical case p = p1(k,n),
that is, when p > po(k,n). In this section, we are going to prove Theorem 1.5. In this critical case, our
approach will be based on a basic iteration argument combined with the slicing procedure introduced
for the first time in the paper [1]. The parameters characterizing the slicing procedure are given by the
sequence {/;};en, where £; =2 — 270U+,

As time-depending functional we consider the same one studied in Section 2, namely, Uy defined
in (2.11). Hence, since p = p1(k,n) is equivalent to the condition

(I-kn(p—1) =2, (4.73)

we can rewrite (2.23) as

Uo(t) = C’/ltT_“ /; sH72(Up(s))P dsdr (4.74)

for any t € (1,T) and for a suitable positive constant C' > 0. Let us underline that (4.74) will be the
iteration frame in the iteration procedure for the critical case p = py(k,n).

We know that Up(t) > Ke for any ¢t € (1,T) and for a suitable positive constant K, provided
that ug, u; are nonnegative, nontrivial and compactly supported (cf. the estimate in (2.21)). Thus,

t T t T
Uo(t) > C’Kpsp/ T_"/ P2 dsdr > C’Kpsp/ 7'_“_2/ (s —1*dsdr
1 1 1 1

CKPep [t CKPeP [t
— +i / 7'_”_2(7 — 1)’”‘1 dr > +i / T_“_Q(T - 1)’”‘1 dr
2 1 K £o

CKPeP ¢ CKPeP t
> - Tdr>—"—"" _log|— 4.75
g, g s () ()

for t > £y = 3/2, where we used 7 < 3(7 — 1) for 7 > {; in the second last step.

Therefore, by using recursively (4.74), we prove now the sequence of lower bound estimates

Uo(t) > K, (log (;)) for t > £ (4.76)

J

for any j € N, where {K}en, {0;};jen are sequences of positive reals that we determine afterwards in
the inductive step.

Clearly (4.76) for j = 0 holds true thanks to (4.75), provided that Ky = (CKPeP)/(3*t1(u+ 1))
and og = 1. Next we show the validity of (4.76) by using an inductive argument. Assuming that (4.76)
is satisfied for some j > 0, we prove (4.76) for j 4+ 1. According to this purpose, we plug (4.76) in
(4.74), so, after shrinking the domain of integration, we get

Uo(t) > CK? /;Tn /KT 52 (log (z—j))ojp dsdr



24 A. Palmieri

for t > ¢; 1. If we shrink the domain of integration to [(¢;/¢;41)7, 7] in the s-integral (this operation
is possible for 7 > ¢;11), we find

Up(t) > CK? /: Fon—2 /;T g (log (;j))ajpdsdT
1 Ty

L+

ot [ e (og (=N [ 5 ) dsd
> : T og (7 Pl s sdr
Lita 7

j+1

» o\ mutl ot . . oip
—CKM(u+ )7 (1-72) /@ w1 (og (7)) dr
j+1

‘ oipt+1
> 27 URFDORY (4 1)~ (1 + poy) (10g (e.t )) J

j+1

for t > €41, where in the last step we applied the inequality 1 — ¢;/¢;41 > 2-(+3) Hence, we proved
(4.76) for j + 1 provided that

Kjy =270 Do +1)71(1 +po;) 'KY and o4 =14 0,p.

Let us establish a suitable lower bound for K. Using iteratively the relation o; =14 po;_; and
the initial exponent oy = 1, we have

= oop’ + Zp =t (4.77)
k=0
In particular, the inequality o;_1p+ 1 =0; < p'/(p — 1) yields
Kj;> L(2#p) 7 K?_| (4.78)

for any j > 1, where L = 272:+UC(u + 1)~'(p — 1)/p. Applying the logarithmic function to both
sides of (4.78) and using the resulting inequality iteratively, we obtain

log K; > plog K1 — jlog (2““]9) +log L

j—1

(j— k) )log 2’”‘1 (Zp >logL
k=0

, CKPeP plog (2°T1p)  logL j P log L
=’ (1 — log (2/+1p) — ==
pj<og(3"+1(ﬂ+1)) (p—1)? +p—1 " p—1+(p—1)2 o5 () p—1

where we applied again the identities in (2.37). Let us define j, = ja(n,p, k, ) as the smallest
nonnegative integer such that

.>Pj10gKo—<

log L P
log (2#t1p)  p—1
Consequently, for any j > jo the following estimate holds

, KPep log (2~ log L :
log K; > p/ <log< CKPe ) _P 8 ( ») + o8 ) = p’ log(NeP), (4.79)

Jo =

3t (p+1) (p—1) p—1

where N = 3~ WD CKP (4 1)1 (20+1p) /07D L1/,
Combining (4.76), (4.77) and (4.79), we arrive at

Up(t) > exp (p7 10g(N5p)) <10g (%>)
exp (p? log(Ne?)) (Llogt)® /@~
= exp (pj log (2—p/(p—1)N5p (log t)P/(p—l))) (% log t)_l/(p_l)

93

WV
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for t > 4 and for any j > jo, where we employed the inequality log(t/¢;) > log(t/2) > (1/2)logt for
t > 4. Introducing the notation H(t,e) = 277/ P~V NeP (log t)p/(pfl), the previous estimate may be
rewritten as

Uo(t) > exp (p/ log H(t,¢)) (% log t)il/(pfl) (4.80)

for t > 4 and any j > jo.
If we fix 9 = eo(n, p, k, 4, R, up, u1) such that

exp (QN_(l_p)/pga(pfl)) > 47

then, for any ¢ € (0,¢] and for ¢ > exp (2N_(1_”)/p5_(1’_1)) we have t > 4 and H(t,e) > 1. Therefore,
for any e € (0, 9] and for t > exp (2N_(1_p)/p€_(p_1)) letting j — oo in (4.80) we see that the lower
bound for Uy(t) blows up and, consequently, Uy(t) may not be finite as well. Summarizing, we proved
that Uy blows up in finite time and, moreover, we showed the upper bound estimate for the lifespan

T(e) < exp (QN—(l—p)/pE—(p—l)) .

Hence the proof of Theorem 1.5 in the critical case p = p1(k, n) is complete.

5. Final remarks

According to the results we obtained in Theorems 1.3, 1.4 and 1.5 it is quite natural to conjecture that
max {pO (ka n+ ﬁ)?pl(kﬂ ’I’L)}

is the critical exponent for the semilinear Cauchy problem (1.4), although the global existence of small
data solutions is completely open in the supercritical case. Furthermore, this exponent is consistent
with other models studied in the literature.

In the flat case k = 0, this exponent coincide with max{ps¢.(n + 1), pryj(n)} which in many
subcases has been showed to be optimal in the case of semilinear wave equation with time-dependent
scale-invariant damping, see [5, 8, 7, 24, 18, 36, 30, 33, 26, 27, 6] and references therein for further
details.

On the other hand, in the undamped case p = 0 (that is, for the semilinear wave equation with
speed of propagation ¢~*) the exponent max{po(k,n),p1(k,n)} is consistent with the result for the
generalized semilinear Tricomi equation (i.e., the semilinear wave equation with speed of propagation
t*, where £ > 0) obtained in the recent works [15, 16, 17, 23].

Clearly, in the very special case ;= 0 and k& = 0, our result is nothing but a blow-up result for
the classical semilinear wave equation for exponents below pst,(n), which is well-known to be optimal
(for a detailed historical overview on Strauss’ conjecture and a complete list of references we address
the reader to the introduction of the paper [35]).

As we have already explained in the introduction, for u = 2 and k = 2/3 the equation in (1.4) is
the semilinear wave equation in the Einstein-de Sitter spacetime. In particular, our result is a natural
generalization of the results in [12, 29].

Furthermore, we underline explicitly the fact that the exponent pg (k, n+ ﬁ) for (1.4) is obtained
by the corresponding exponent in the not damped case u = 0 via a formal shift in the dimension of
magnitude #;. This phenomenon is due to the threshold nature of the time-dependent coefficient of
the damping term and it has been widely observed in the special case k£ = 0 not only for the semilinear
Cauchy problem with power nonlinearity but also with nonlinarity of derivative type |u.|P (see [34, 13])
or weakly coupled system (see [2, 28, 34, 14]).

Finally, we have to point out that after the completion of the final version of this work, we found
out the existence of the paper [37], where the same model is considered. We stress that the approach we
used in the critical case is completely different, and that we slightly improved their result, by removing
the assumption on the size of the support of the Cauchy data (cf. [37, Theorem 2.3]), even though we
might not cover the full range p € [0, uo(k, n)] in the critical case due to the assumption u & (k,2 — k).
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