In this paper, we prove the existence of an extremal function for the Adams-Moser-Trudinger inequality on bounded, smooth, open sets of dimension 2m, m ≥ 1. Moreover, we extend this result to improved versions of Adams' inequality of Adimurthi-Druet type. Our strategy is based on blow-up analysis for sequences of subcritical extremals and introduces several new techniques and constructions. The most important one is a new procedure for obtaining capacity-type estimates on annular regions.
Improved Adams-type inequalities and their extremals in dimension 2m
Mancini G.
2021-01-01
Abstract
In this paper, we prove the existence of an extremal function for the Adams-Moser-Trudinger inequality on bounded, smooth, open sets of dimension 2m, m ≥ 1. Moreover, we extend this result to improved versions of Adams' inequality of Adimurthi-Druet type. Our strategy is based on blow-up analysis for sequences of subcritical extremals and introduces several new techniques and constructions. The most important one is a new procedure for obtaining capacity-type estimates on annular regions.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
DelaTorre, Azahara_ Mancini, Gabriele - Improved Adams-type inequalities and their extremals in dimension 2m (2020) [10.1142_S0219199720500431] - libgen.li.pdf
non disponibili
Tipologia:
Documento in Versione Editoriale
Licenza:
Copyright dell'editore
Dimensione
737.25 kB
Formato
Adobe PDF
|
737.25 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
AD_DelaTorre_Mancini (Revised).pdf
accesso aperto
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
663.36 kB
Formato
Adobe PDF
|
663.36 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.