In this paper, we prove the existence of an extremal function for the Adams-Moser-Trudinger inequality on bounded, smooth, open sets of dimension 2m, m ≥ 1. Moreover, we extend this result to improved versions of Adams' inequality of Adimurthi-Druet type. Our strategy is based on blow-up analysis for sequences of subcritical extremals and introduces several new techniques and constructions. The most important one is a new procedure for obtaining capacity-type estimates on annular regions.

Improved Adams-type inequalities and their extremals in dimension 2m

Mancini G.
2021-01-01

Abstract

In this paper, we prove the existence of an extremal function for the Adams-Moser-Trudinger inequality on bounded, smooth, open sets of dimension 2m, m ≥ 1. Moreover, we extend this result to improved versions of Adams' inequality of Adimurthi-Druet type. Our strategy is based on blow-up analysis for sequences of subcritical extremals and introduces several new techniques and constructions. The most important one is a new procedure for obtaining capacity-type estimates on annular regions.
File in questo prodotto:
File Dimensione Formato  
DelaTorre, Azahara_ Mancini, Gabriele - Improved Adams-type inequalities and their extremals in dimension 2m (2020) [10.1142_S0219199720500431] - libgen.li.pdf

non disponibili

Tipologia: Documento in Versione Editoriale
Licenza: Copyright dell'editore
Dimensione 737.25 kB
Formato Adobe PDF
737.25 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
AD_DelaTorre_Mancini (Revised).pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 663.36 kB
Formato Adobe PDF
663.36 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/385944
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 9
social impact