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Abstract

In this paper we prove the existence of an extremal function for the Adams-Moser-Trudinger
inequality on the Sobolev space H{'(f2), where Q is any bounded, smooth, open subset of R*™,
m > 1. Moreover, we extend this result to improved versions of Adams’ inequality of Adimurthi-
Druet type. Our strategy is based on blow-up analysis for sequences of subcritical extremals and
introduces several new techniques and constructions. The most important one is a new procedure for
obtaining capacity-type estimates on annular regions.

1 Introduction

Given m € N, m > 1, let Q C R?>™ be a bounded open set with smooth boundary. For any 3 > 0, we
consider the Moser-Trudinger functional

Fp(u) ::/eﬁ"2dx
Q
and the set
Mo :={u € Hy(Q) : |[ullup @) <1},
where

A"y if m=2n, n €N,

lulmp @) = 1A= ullr2@)  and  A%u:= { VA" ifm=2n+1, neN.
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52402-C3-1-P. The second author has received funding from the INDAM research group “Gruppo Nazionale per 1’Analisi
Matematica, la Probabilita e le loro Applicazioni” (GNAMPA).



The Adams-Moser-Trudinger inequality (see [1]) implies that

sup Fg < +00 = B < B, (L.1)
Mo

where 3* := m(2m — 1)!Vol(S*™). This result is an extension to dimension 2m of the work done by
Moser [37] and Trudinger [49] in the case m = 1, and can be considered as a critical version of the
Sobolev inequality for the space HJ"(£2). A classical problem related to Moser-Trudinger and Sobolev-
type embeddings consists in investigating the existence of extremal functions. While it is rather simple
to prove that the supremum in is attained for any 8 < f*, lack of compactness due to concentration
phenomena makes the critical case § = 8* challenging. The first proof of existence of extremals for
was given by Carleson and Chang [5] in the special setting m = 1 and Q = B1(0). The case of arbitrary
domains 2 C R? was treated by Flucher in [9]. These results are based on sharp estimates on the values
that Fj3 can attain on concentrating sequences of functions. Recently, a different approach was proposed
in [30] and [§]. Concerning the higher order case, as far as we know, the existence of extremals was proved
only for m = 2 by Lu and Yang in [28] (see also [20]). In this work, we are able to study the problem for
any arbitrary m > 1 and any arbitrary domain in R?™. Indeed, we prove here the following result.

Theorem 1.1. Let Q C R?™ be a smooth bounded domain, then for anym > 1 and B8 < B* the supremum
in (L.1) is attained, i.e. there ewists a function u* € My such that Fg(u*) = sup,,, Fg.

More generally, we are interested in studying extremal functions for a larger family of inequalities.
Let us denote )
HU||H6"(Q)

A () = in —
1) we R @)u0 [, g

For the 2-dimensional case, in [2] it was proved that if Q@ C R? and 0 < a < (), then

*® 2 2
sup /eﬁ wtallulieg) gy < 4oo. (1.2)
u€Mo JQ

Moreover the bound on « is sharp, i.e. the supremum is infinite for any o > A;(Q). A stronger form of
this inequality can be deduced from the results in [4§]:

sup Fg. < +o00. (1.3)
u€HG (), lull?, o —ellull} s g <1

HY (@) L2(Q)—
Surprisingly, the study of extremals for the stronger inequality (1.3]) is easier than for (1.2). In fact,
it was proved in [52] that the supremum in (1.3)) is attained for any 0 < o < A;(Q2), while existence
of extremal functions for (1.2)) is known only for small values of a (see [27]). Such results have been
extended to dimension 4 in [28] and [38]. In this paper, we consider the case of an arbitrary m > 1. For
any 0 < a < A\1(£2) we denote
ull2 =l gy — ol ey

and we consider the set
My :={ue HJ'(Q) : |ulla <1}

and the quantity

Sa,p :=sup Fg. (1.4)
M,

Observe that Poincare’s inequality implies that for any 0 < a < A1(Q), || - ||« is a norm on H{" which is
equivalent to || - || gz». Our main result is the following:

Theorem 1.2. Let Q C R?™ be a smooth bounded domain, then for any m > 1 the following holds:

1. For any 0 < 8 < B* and 0 < a < A1(Q) we have S, g < +00, and there exists a function u* € M,
such that Fg(u*) = Sa.8.



2. Ifa > M\ (Q), or B> B*, we have Sy g = +00.

The proof of the first part of Theorem for = * is the most difficult one and it is based on blow-

up analysis for sequences of sub-critical extremals. We will take a sequence 3,  f* and find u,, € M,,

such that Fg, (un) = Sa,p,. If u, is bounded in L>(Q), then standard elliptic regularity proves that

uy, converges in H™(Q2) to a function ug € M, such that Fs«(ug) = Sa,5-. Hence, one has to exclude

that w, blows-up, i.e. that u, := max|u,| — 4+o00. This is done through a contradiction argument. On
Q

the one hand, if p,, — +00, one can show that u,, admits a unique blow-up point xy and give a precise
description of the behavior of u,, around zy. Specifically, we will prove (see Proposition that blow-up
implies

meﬂ* (Ca,xo - Im)

22m ’
where C, 4, is the value at xy of the trace of the regular part of the Green’s function for the operator
(=A)™ — @, and I, is a dimensional constant. On the other hand, by exhibiting a suitable test function,
we will prove (see Proposition that such upper bound cannot hold, concluding the proof.

Considering that the rather standard strategy in the study of this kind of problems (see e.g. [2], [9],
[13], [18], [19], [27], [28], [38] and [52]) is not easy to generalize, we need to introduce several elements of
novelty.

First, our description of the behaviour of w,, near its blow-up point zq is sharper than the one given
for m = 2 in [28] and [38]. There, in order to compensate the lack of sufficiently sharp standard elliptic
estimates on a small scale, the authors needed to modify the standard scaling for the Euler-Lagrange
equation satisfied by u,. Instead, following the approach first introduced in [32], we are able to use the
standard scaling replacing classical elliptic estimates with Lorentz-Zygmund type regularity estimates.

Secondly, in order to describe the behaviour of w, far from xg, we extend to higher dimension the
approach of Adimurthi and Druet [2], which is based on the properties of truncations of w,. To preserve
the high-order regularity required in the high-dimensional setting, we introduce polyharmonic truncations.
This step, requires precise pointwise estimates on the derivatives of u,, which are a generalisation of the
ones in [36], where the authors study sequences of positive critical points of Fjg constrained to spheres
in Hi*. We stress that the results of [36] cannot be directly applied to our case, since here subcritical
maximizers are not necessarily positive in € if m > 2. In addition, the presence of the parameter «
modifies the Euler-Lagrange equation. While the differences in the nonlinearity do not create significant
issues, the argument in [36] relies strongly on the positivity assumption. Therefore, here we propose a
different proof.

The most important feature of our proof of Theorem [I.2]is that it does not rely on explicit capacity
estimates. A crucial step in our blow-up analysis consists in finding sharp lower bounds for the integral
of |[A%u,|? on annular regions. In all the earlier works, this is achieved by comparing the energy of wu,,
with the quantity

= i <
Sawg TLEI-EOO Fﬂn (un) — |Q| +

uCkEq

i(a,b, Ry, Re) = min/ |AZ u)?dy
{R1<|z|<R2}

for suitable choices of a = (ag,...,am-1), b = (bo,...,bm—1), and where E,; denotes the set of all
the H™ functions on {R; < |z| < Ry} satisfying d’u,, = a; on dBg,(0) and & u, = b; on dBg,(0)
for i =0,...,m — 1. While for m =1 or m = 2, i(a,b, R1, R2) can be explicitly computed, finding its
expression for an arbitrary m appears to be very hard. In our work we show that these capacity estimates
are unnecessary, since equivalent lower bounds can be obtained by directly comparing the Dirichlet energy
of u, with the energy of a suitable polyharmonic function. This results in a considerable simplification
of the proof, even for m = 1, 2.

Finally, working with arbitrary values of m makes much harder the construction of good test functions
and the study of blow-up near 9f2, since standard moving planes techniques are not available for m > 2.
To address the last issue, we will apply the Pohozaev-type identity introduced in [43] and applied in [35]
to Liouville-type equations.



It would be interesting to extend our result to different Adams-type inequalities. Let Q C RY, if we

consider the space W(;n X (Q), without the dimension restriction N = 2m, the existence of extremals for
the inequality (see [I]) was proved only for m = 1 by K-C Lin in [23]. More generally, one could consider
the non-local Moser-Trudinger inequality for fractional-order Sobolev spaces proved in [34], for which
the existence of extremals is still completely open. In this fractional setting, the behavior of blowing-
up subcritical extremals was studied in [29] (at least for nonnegative functions). However, obtaining
capacity-type estimates becomes much more challenging, and our argument to avoid them relies strongly
on the local nature of the operator (—A)™. Recently, an existence result was given in [31] for dimension
1 via blow-up analysis for the Caffarelli-Silvestre harmonic extension of sub-critical extremals.

We would like to point out that G. Lu and Q. Yang [26] proved some Adams type inequalities in the 4-
dimensional ball in which the L? norm appearing in the definition of | - ||, is replaced by a singular weight
involving the distance from the boundary. These results, later extended to arbitrary even dimension [17],
are known as Hardy-Adams inequalities (see also [50} 25]) and references therein) and can be interpreted
as the analogue of the Adams-Adimurthi-Druet inequality of Theorem for the hyperbolic ball (see in
particular [26l Theorem 1.8] and [I7, Theorem 1.9]). The proof of these results are not based on blow-up
techniques but on Fourier-analysis on the hyperbolic space. We believe that similar arguments might be
used for an alternative proof of the finiteness of S, g for o < A\1(2) and 8 = 8*. It would be interesting
to understand whether it is possible to take o = A1 (€2) by modifying the expression of Fj, as done e.g.
in [26, Theorem 1.7] and [I7, Theorem 1.8].

In this paper we consider only the case in which Q is bounded, but Moser-Trudinger and Adams
type inequalities have been proved in many different forms for unbounded domains as well (see e.g.
[3, [45, [46], 141 151 10}, 34]). In this setting, extremals may not exist even for sub-critical exponents, because
lack of compactness may occur in the form of mass-vanishing at infinity. We refer to [12, [45] 2T, 39} 6],
for some existence and non-existence results in dimension two (or for W"(Q), @ C R"). In [6] the
authors also consider Adams-type inequalities in R* with an L? perturbation term in the functional. If
the perturbation term is sufficiently strong, they prove existence of extremals for sub-critical and critical
inequalities combining the symmetrization technique introduced in [16] with decay estimates at infinity
and with a blow-up analysis similar to the one in [28].

This paper is organized as follows. In Section [2| we will introduce some notation and state some
preliminary results. In Section [3] we will focus on the subcritical case S < f*. In Section [4] we will
analyze the blow up behavior of subcritical extremals. Since this part of the paper will discuss the most
important elements of our work, it will be divided into several subsections. Finally, in Section |5} we will
introduce new test functions and we will complete the proof of Theorem For the reader convenience,
we will recall in Appendix some known results concerning elliptic estimates for the operator (—A)™.
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2 Preliminaries

Throughout the paper we will denote by w; the [—dimensional Hausdorff measure of the unit sphere
St C R+, We recall that, for any m > 1,

2rm 2m+17.rm
Woam—1 = 7( and



It is known that the fundamental solution of (—A)™ in R?*™ is given by —% log ||, where

:5*

Ym = wzm_122m72[(m — 1)'}2 om

)

with 5* defined as in ([1.1)). In other words, one has

2m
/3*

More generally, for any 1 <1 <m — 1, we have

o (

log |x> = 0 in R?™,

- 1
l _
A'(log|z|) = Km’lW’
where
~ (=D m-1)!
Km,l — (_1)l+122l 1( (m z(l — 1)') (22)

This also yields
Al+%(log |z]) = —2ZI~(mJL

|22
For any 1 < j < 2m — 1, we define
Rm,% for j even
Kni=4 (- DK, izn for jodd,j >3, (2.3)
1 for j = 1.
Then, we obtain
A% (log |z]) = ITZ;gej(x), where ei(y) == { % jjf)\irll_’ (2.4)

In order to use the same notation for all the values of m, we will use the symbol - to denote both
the scalar product between vectors in R?™ and the standard Euclidean product between reals numbers.
This turns out to be very useful to have compact integration by parts formulas. For instance, we will use
several times the following Proposition:

Proposition 2.1. Let Q C R?>™ be a bounded open domain with Lipschitz boundary. Then, for any
u € H™(Q), v e H*™(Q), we have

m-1 j 2m—j—1
/A%U-A%’UdIZ/U(—A)mUdZ‘— Z/ (=)™ Ay AT vdo,
Q Q =0 Jon

where v denotes the outer normal to OS).

A crucial role in our proof will be played by Green’s functions for operators of the form (—A)™ — .
We recall here that for any zg € ©, and 0 < a < A\1(2), there exists a unique distributional solution
Go,z, Of

(—A)"Go py = aGa zy + Oz, in Q, (2.5)
Gowy=0Gony =-..=0" 1Gory =0 on OQ. ’

Some of the main properties of the function G, 4, are listed in the following Proposition.



Proposition 2.2. Let Q be a bounded open set with smooth boundary. Then, for any ro € Q and
0 <a< (), we have:

1. There exist Co zy € R and 1y o, € C*™~H(Q) such that Yoz, (v0) = 0 and

Go o (z) =~ w,zo T Voo (), for any x € Q\ {zo}.

2m
B
2. There exists a constant C' = C(m, a, ) independent of xo, such that
Gaao(2)| < Cllog |z — zol,
and

C

Vl(;' < — ’
‘ 047560( )‘ |.13 xoll
for any 1 <l<2m—1,x€Q\{x0}

3. Gazo(x) = Gaz(x0), for any x € Q\ {zo}.
Proof. We refer to [42] Chapter 2] for the complete proof. For the reader convenience we sketch the

main steps. Let T'y, (z) := — . The first assertion follows by the decomposition G4 o, =
I'yy + Yo z,, where W, . satisfies

(A" Wy — ¥y 4y = al'y, inQ,

with 920, », = —0.T,, for 0 < i < m — 1 on Q. Note that the RHS belongs to L4(2) V¢ > 1 and,
since @ < A1(Q), this equation admits a unique solution in H™(f2). Then, using elliptic regularity (see
Proposition we have that U, ,, € W?™4(Q) C C*™~1(Q) for q large enough (higher regularity
could be proved, but C?™~1! regularity is enough for the purposes of our paper). Then, we get 1 with
Coze = Va,z(@0) and Yo zy = Yo,z — Ca.zm- The growth estimates in 2 follow by [7, Theorems 12
and 24]. Finally, one can get 3 as in the classical case m = 1 using Proposition with u = G4, and
v =Ga,z in Q\ (B:(xo) UBe(z)) and letting e — 0 . O

In addition, using integration by parts and Proposition we can establish the following new prop-
erty.

Lemma 2.3. For any xo € Q and 0 < o < A\1(2), we have

10g5 =+ O(y o + Hm + O(5| 10g5|)

/ |Am Ga aro| dr = o G, xo||L2(Q) ﬂ*
Q\Bs (o)

as 6 — 0, where Cy 4, is as in Proposition[2.9 and

om 2 m—1 . .
< ) Wom—1 Z(fl)JerKm’%Km’zm;jfl if m> 2,

H,, = B* — (2.6)
0 ifm=1.
Proof. From Proposition applied in Q \ Bs(zo) and (2.5), we find
[ a¥Guafae—af  Gdet Z / 14 - AS Gy o A F Gy, do
Q\B;s(z0) Q\Bs(zo) OBs(x0)



On 9Bj(xp), Proposwlon! 24), 2mK o1 = % yield
2m—1 2m —2m 1—2m
Ve GuupeA 7 Gy = e log 6 + Cy 2 + O(9) 5 K, 2me1 6 +0(1)
—-1)m 2
= !51*2’” (T log d + Cozy + O(8) + O(8*™ 1| log5)> ,
Wam—1 ﬁ

and, for m >2and 1 <j <m — 1, that

v ASG AT G, = <_2me)j5—j+o(1)>( LS 2m+0(1)>

/6* ﬁ* m,
2 .
= ( 67*”/) Km J K 2"1727‘71 61_2m(1 + O((SJ))
Then, we get
m—1 m,
Z oo oy do = 5 logd + Cyzy + Hp + O(0|logd]),  (2.7)
aBg(Zo)

Jj=

with H,, as in (2.6). Finally, applying again Proposition we find

[ s =G ey + O™ 1082 5). (2)
Q\Bj;(z0)
The conclusion follows by (2.7) and (2.8)). O

Remark 2.4. One can further observe that

m m—1 (_1)[%]
Hn =5 j
j=1
Indeed, we have the identity
1
m 7 J even,
(—1) Wom—1 K 7K i1 =
m 6* m,Z "  mm % 3 - 1] - j odd.
Hence,
2m, m—1 m—1 1 m—1 1
Wom— 15* Z( 1)J+me,%Km7m*i 3 Z G Z m— i1
) J ; m—=7
j=1 Jj=1,j even j=1,j odd
m—1 2m—2
IEE SN
Jj=1,3 evenj j=m,j even]
1 (—1)E]
24

We conclude this section, by recalling the following standard consequence of Adams’ inequality and
the density of C°(Q2) in HJ" ().

Lemma 2.5. For any u € HJ*(Q) and 8 € R, we have = LY(Q).



Proof. For any € > 0 we can find a function v, € C§°(Q2) such that |ve — u||§{6n(9) < e. Since

u? =02 4 (u—v2)? + 20 (u — ve) < 202 +2(u — v.)?,
we have )
Bu? 2802 28(u—wve)? 2802 265( Hufvugﬂ;[m(m>
™ < e | Lo ye < e [ e pe 8 :
If we choose € > 0 small enough, we get 2¢58 < * and, applying Adam’s inequality (|1.1)), we find

2 2 u—"uv
/ e’ dx < ||€26v€||L°°(Q)Fﬁ* (M) < +o00.
Q ellHg™ (2)

3 Subcritical inequalities and their extremals

In this section, we prove the existence of extremal functions for Fg on M, in the subcritical case 3 < 8%,
0 < a< A1(2). Asin the case m = 1, this is a consequence of Vitali’s convergence theorem and of the
following improved Adams-type inequality, which is a generalization of Theorem 1.6 in [24].

Proposition 3.1. Let u, € H"(S2) be a sequence of functions such that |[un||mz ) < 1 and un, — ug

in Hy*(Q). Then, for any 0 < p < , we have

[ S
=Tl

lim sup Fj5+ (uy,) < +00.

n—-+00
Proof. First, we observe that
l[tn — uO”?—IG”’(Q) = ||Un||?q(;n(9) + ||UOH§—I[§"(Q) = 2(tn, uo) gy (o) <1 - ||UOH§—I{)”(Q) +o(1).
Hence, there exists o > 0 such that
pllun = uol 0y <o <1,

for sufficiently large n. For any v > 0, we have

1
uZ < (T++%)ud+ 1+ ﬁ(un —up)?.

Since 0 < o < 1, we can choose v sufficiently large so that o (1 + 7%) < 1. Applying Holder’s inequality

. _ 1 /I __ _q
with exponents ¢ = 70(1+ ) and ¢’ = o1 We get

1
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p,l?*(l—&-w%)(un—uo)z ||L’1(Q)-

* * 1 — 2 *
Fope ) < / (P8 (g P () —u0)® g o (””2)“3||Lq'(sz)||€

Q
Lemma guarantees that Hepﬁ*(“f)"gnml(m < +00. Moreover, since
1 P
pq(1+ W)Hun - u0||§{y(9) = ;Hun - uO”?{(S"(Q) <1,

for large n, Adams’ inequality (|L.1)) yields

1
q

(14 L) (un —uo)? 1 %
”epﬂ (1+2)( 0) HL‘I(Q) = Fg- ( pg(1+ ?)(un —uo)) < Soﬁ* < 400.

Hence, limsup,,_, ;o Fpp+(un) < +00. O



Next we recall the following consequence of Vitali’s convergence theorem (see e.g. [44]).
Theorem 3.2. Let Q C R*™ be a bounded open set and take a sequence { fntnen C LY (Q). Assume that:
1. For a.e. x € Q the pointwise limit f(x) = lim, 1o fn(z) exists.
2. There exists p > 1 such that || fp| ey < C.
Then, f € LY(Q) and f, — f in L}(Q).
We can now prove the existence of subcritical extremals.

Proposition 3.3. For any 8 < 8* and 0 < a < A1 (), we have Sy g < +00. Moreover Sy s is attained,
i.e., there exists uq g € My such that So 3 = F(Ua,g)-

Proof. Let u, € M, be a maximizing sequence for Fjg, i.e. such that Fg(u,) — Sa,g as n — +oo. Since

Fa(un) < Fp(5-), w.lo.g we can assume [|lup|[o = 1, for any n € N. Since ov < A1(€2), uy, is uniformly

bounded in HJ*(2). In particular, extracting a subsequence, we can find uy € H§*(€2) such that u, — uo
in H*(Q), un, — up in L*(Q) and u,, — ug a.e. in Q. Observe that

||U0||i = H%H%{g&(g) - 0‘””0”%2(9) < lﬁgl}rgof Hun”%rgl(ﬂ) - O‘H“n”%%ﬂ) = EQ}SE HunHi =1,
hence uy € M. If we prove that there exists p > 1 such that
2
le?% || 1oy < C, (3.1)

then we can apply Theorem [3.2 to f,, := e and we obtain Fg(ug) = Sa,p and So 3 < +00, which
concludes the proof. To prove (3.1)) we shall treat two differnt cases.
Assume first that ug = 0. Then we have

5||“n||?qgt(g) =p(1+ 0‘||un||%2(9)) =B+o(1) <p,
and we can find p > 1 such that
pBllunltp o) < B

for n large enough. In particular, using (|1.1)), we obtain

P12 ) = / ende < Fie | - | < S0, < +o0.
Q ||Un||H5"(Q)

Assume instead ug # 0. Consider the sequence v, : , and observe that v, — vg in HJ*(2)

= UYn
lun HHgl(Q)
UQ

here vg = —Y%0 . Since
w 0 Ttalluoll?,
o |77
2 2 2 5
(1 — n) = (1 L SR I
72z (1= llvollZge) = (1+ efjunll72) ( L+ afluollZ
=1+allull7z — ”“0”%’6" +o(1)
=1~ Jluo|l3 + o(1),

and ug # 0, we get

lim sup |[un, || 3m < ;2
n—+00 0 1- ”UOHHg)n
In particular, there exist p, ¢ > 1 such that

2
p|lw m < q<
|| ’I’L||I‘IO 17 ||U0||%{6n7



for n large enough. Then, we get

2 * 2 B* Jun |2 mv? * 2
eI, < [l g, = e 1l 1, < e |1 = Fyae(va) < €,
where the last inequality follows from Proposition Therefore, the proof of (3.1)) is complete. O

Finally, we stress that, as 3 — 3%, the family v, g is a maximizing family for the critical functional
F-.

Lemma 3.4. For any 0 < a < A(Q2), we have

lim S, 3 = S4.8*-
53 a,B a,B

Proof. Clearly, S, s is monotone increasing with respect to 5. In particular, we must have

lim Sy < Sy *-
L a,f = Pa,B

To prove the opposite inequality, we observe that, for any function v € M, the monotone convergence
theorem implies

Fg«(u) = lim Fg(u) < l;m Sa.8-

B B* BB

Since u is an arbitrary function in M,, we get

So g < lim S, .
a,B* = BB a,Bn

4 Blow-up analysis at the critical exponent

This section is the most important one in this work. Here, we will provide the main ingredient for the
proof of Theorem We will study the behaviour of subcritical extremals as  approaches the critical
exponent $* from below. We will show that either they converge to an extremal of the critical problem,
or they blow-up at one point. In the last case, we will obtain an upper bound for S, g+. This is the result
stated in Proposition and together with Proposition [5.3| prove Theorem More details are given
at the end of Section

In the following, we will take a sequence (8, )nen such that

0<B,<p* and pf,— B*, asn — +oo. (4.1)
Due to Proposition for any n € N, we can find a function u,, € M, such that
Fg,(un) = Sa.p,- (4.2)
Lemma 4.1. If u,, € M, satisfies , then wu, has the following properties
1. Juplla = 1.
2. u, s a solution to

(—A)"u, = )\nuneﬁ"ui + oy, mn ),
Up = Oty =+ = 0" tu,, =0 on 99,

—1
An = </ uieﬁ""idx> . (4.4)
Q

10

where



3. u, € C™(Q).
4. Fg, (up) = Sap+ as n — 4o0.
5. If A is as in (4.4]), then limsup A\, < +oc.

n—+oo

Proof. 1. Since u,, € M,, we have ||u,|lo <1,V n € N. Moreover, the maximality of u, implies u,, # 0.
If ||unlla < 1, then we would have

Up
Saﬁn:Fﬁn(un)<Fﬁn (”U || )7
n|la

which is a contradiction.
2. Since u,, is a critical point for Fjg, constrained to M, there exists v, € R such that

2
Tn ((una (P)H{]” - a(“nv @)L2) = ﬁn/ Uneﬁ"u"@dl“’ (45)
Q

for any function ¢ € HJ"(2). Taking u,, as test function and using 1., we find
Y = Bn/ uie'g""idx. (4.6)
Q

In particular, 7, # 0 and (4.5 implies that w,, is a weak solution of (4.3) with X, := f—" Finally, (4.6)
is equivalent to

().

3. By Lemm we know that u, and ePnun belong to every LP space, p > 1. Then, applying
standard elliptic regularity results (see e.g. Proposition and Sobolev embedding theorem, we find
u, € W2mP(Q) C C?*m=17(Q), for any v € (0,1). Then, we also have (—A)™u,, € C*"~17(Q) and,
applying recursively Schauder estimates (Proposition , we conclude that u,, € C°°(Q).

4. This is a direct consequence of Lemma

5. Assume by contradiction that there exists a subsequence for which A\,, = +00, as n — +00. Then,

by (4.4), we have
/ uieﬂ"“idm — 0,
Q

as n — +o0. Exploiting the basic inequality ' < 1+ te* for t > 0, we obtain
F, (un) < [9] +,5n/ uZePrtnde — 9.
Q

Since, by 4., Fa, (un) = Sa,p, — Sa,p+ > ||, we get a contradiction.
O

In order to prove that S, g- is finite and attained, we need to show that u, does not blow-up as
n — 4o00. Let us take a point z,, € €2 such that

JTRES mﬁax|un| = |up(z,)|. (4.7)
Extracting a subsequence and changing the sign of u,, we can always assume that
Un(zp) = pn  and  x, = 20 € Q, as n — +o0. (4.8)

The main purpose of this section consists in proving the following Proposition.

11



Proposition 4.2. Let B, Un, fn, Tn, and xo be as in (4.1), (4.2), (4.7), and (4.8). If pun — 400, then

xo € Q and we have

_ . w?m ,@* Cum _I'm
Sapr = lm Fp, (un) < |9 + 5 0e (Cozo=tn),

where Cy 4, 5 as in Proposition and

ly|*

o os(1414)

Iy == — i / z dy. (4.9)
Buam Jron (44 [y

The proof of Proposition is quite long and it will be divided into several subsections. Some
standard properties of u, will be established in section 4.1. Then, in section 4.2, as a consequence of
Lorentz-Zygmund elliptic estimates, we will prove uniform bounds for Au2. Such bounds will be crucial
in the analysis given in section 4.3, where we will study the behaviour of u,, on a small scale. Sections 4.4,
4.5 and 4.6 contain respectively estimates on the derivatives of u,,, the definition of suitable polyharmonic
truncations of u,,, and the description of the behaviour of u,, far from xy. In section 4.7 we will deal with
blow-up at the boundary, which will be excluded using Pohozaev-type identities. Finally, we conclude
the proof in section 4.8 by introducing a new technique to obtain lower bounds on the Dirichlet energy
for u, on suitable annular regions.

In the rest of this section S, un, pn, Tn, and xg will always be as in Proposition and we will
always assume that p,, — +oc0.

4.1 Concentration near the blow-up point

In this subsection we will prove that, if u,, — 400, u, must concentrate around the blow-up point xg.
We start by proving that its weak limit in H{*(Q) is 0.

Lemma 4.3. If u, — +oo, then u, — 0 in HJ*(Q) and u, — 0 in LP(Q) for any p > 1.

Proof. Since u,, is bounded in HJ*(?), we can assume that u, — ug in HJ"(Q) with ug € HJ*(Q2). The
compactness of the embedding of HJ*(£2) into LP(2) implies w,, — ug in LP(Q2), for any p > 1.

If ug # 0, then, by Proposition ePnui is bounded in LPo (Q) for some py > 1. By Lemma we
know that A, is bounded. Hence (—A)™u, is bounded in L*(Q) for any 1 < s < pp. Then, by elliptic
estimates (see Proposition , we find that w,, is bounded in W?2™#*(Q) and, by Sobolev embeddings,

in L*°(£2). This contradicts u, — +oo. Hence, we have uy = 0.
O

In fact, u, converges to 0 in a much stronger sense if we stay far from the blow-up point zg, while
|A% u,|? concentrates around .

Lemma 4.4. If u, — 400, then we have:
1. |A% u,|? — ., in the sense of measures.
2. P is bounded in L*()\ Bjs(xg)), for any s > 1, § > 0.
3. up — 0 in C*=LY(Q\ Bs(xo)), for any v € (0,1), § > 0.

Proof. First of all, for any function ¢& € C*™(Q), we observe that

with . .
[fal SOUY IV [V < Co Y [V g,
=0 =0

12



for some constants Cy,Cs > 0, depending only on m, [, and £. Since u,, — 0 in H{*(Q), and H*(Q) is
compactly embedded in H™~1(2), we get that f,, — 0 in L?(2). In particular, we have

8% (&) Eay = [ @10%FunPde+2 [ A%uy- fudo+ [ |f,Pdo
Q Q @ (4.10)

= / E2|A% uy)?dx + o(1).
Q

We can now prove the first statement of this lemma. Assume by contradiction that there exists r > 0
such that

JSruPHA%UnH%%BT(g;O)nQ) <L (4.11)

Take a function & € C°(R*™) such that £ = 1 on Bz (zo), £ = 0 on R*™ \ B,(x0) and 0 < £ < 1. By
and (4.11)), we have that limsup,,_, . HA%(un{)H%z(Q) < 1. Adams’ inequality implies that we
can find s > 1 such that e%+(“»9” is bounded in L*(). In particular, e’“ is bounded in L*(Bzx (o))
By Lemma up, — 0 in LP(Q) for any p > 1. Therefore, we get that (—A)™u, — 0 in L4(Q) for
any 1 < ¢ < s. Then, Proposition yields u, — 0 in W?2™9(Q2) and, since ¢ > 1, in L>°(Q). This
contradicts p, — +oc0.

To prove 2., we fix a cut-off function & € C°(R?*™) such that & = 1 in R*™ \ Bs(zg), & = 0 in
B;(Q), and £ < 1. Since A% u,| = 84y, from we get [|A% (up&2)|lr2() — 0. Then, Adams’

inequality implies that eBn(uné2)” is hounded in L* (Q), for any s > 1. Because of the definition of &, we
get the conclusion.

To prove 3., we apply standard elliptic estimates. By part 2., we know that u,, and B are bounded
in L*(Q\ Bs(xp)) for any s > 1. Since A, is bounded, the same bound holds for (—A)™u,,. Then, elliptic
estimates (Propostion imply that wu,, is bounded in W2™*(Q \ Bas(z0)). By Sobolev embedding
theorem, it is also bounded in C?™~17(Q\ Bas(xg)), for any v € (0,1). Then, up to a subsequence, we
can find a function ug € C?™~17(Q\ Bas(z0)) such that u, — ug in C?™~17(Q\ Bas(z0)). Since u,, — 0
in HJ*(Q), we must have ug = 0 in Q\ Bas(zo) and u,, — 0 in C?*"~17(Q\ Bas(z0)). O

lim
n—

4.2 Lorentz-Sobolev elliptic estimates
In this subsection, we prove uniform integral estimates on the derivatives of u,. Notice that Sobolev’s
inequality implies [|[V'uy||, 2 @ S C for any 1 <1 < m — 1. In addition, standard elliptic estimates

(Proposition yield ||V || (o) < C, for any p < 2Tm and m <1 <2m — 1. Arguing as in [32], we
will prove that sharper estimates can be obtained thanks to Lorentz-Zygmund elliptic regularity theory
(see Proposition in Appendix). In the following, for any > 0, 1 < p < +o00, and 1 < ¢ < 400,
(L(og L), || - | Lgog £ye) and (L®D(Q), || - [|(p.q)), will denote respectively the Zygmund and Lorentz
spaces on ). We refer to the Appendix for the precise definitions (see —).

Lemma 4.5. For any 1 <1< 2m — 1, we have
1
[V un|(2m 9y < C.
Proof. Set fp := (—A)™u,. By Proposition there exists a constant C' > 0 such that

||VZUnH(#,2) < C|lfall

i,
L(LogL)?2

for any 1 <1 < 2m — 1, n € N. Therefore, it is sufficient to prove that f,, is bounded in L(log L)%.For
any z € RT, let log™ x := max{0,log z} be the positive part of logz. Since 3, and \, are bounded, using

the simple inequalities

log(xz +y) <z +loghy and logt (zy) <log™ x +log™ ¥, r,y € R,
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we find

log(2+ |fn]) <2+ log™ |tn| + log™ ()\neﬁ"ui + a)
< C+log™ fun| + Bous,
< C(fun| + 1)%

Then,
[Fal1og? 2+ 1fal) < CLAl(L+ [un]) < € (Anfunle™ ™ + Apude™ % + afun| + au )

and, by Lemma and (4.4), as n — 400 we get

/ |fn10g5(2+|fn|)deO(/\n / |un|eﬁnuidx+1+o(1>)
Q Q

<C ()\n/ \un\eﬂ"“idx + )\n/ |un\26’8"“id:c +1+ 0(1)>
{lun|<1} {lun|>1}

< C (M€ [Q] +2+0(1)) = O(1).

Hence, f,, is bounded in L(LogL)%. O

As a consequence of Lemma we obtain an integral estimate on the derivatives of u2, which will

play an important role in Sections 4.3 and 4.4. The idea behind this estimate is based on the following
remark: up to terms involving only lower order derivatives, which can be controlled using Lemma
(—A)™u? coincides with w, (—A)™u,, which is bounded in L!(€). Then, estimates on u2 can be obtained
via Green’s representation formula.

Lemma 4.6. There exists a constant C' > 0 such that for any 1 <1 <2m —1, x € Q, and p > 0 with
B,(z) C Q, we have

/ Viupldy < Cp*m .
Bp(x)

Proof. We start by observing that (—A)™u?2 is bounded in L(9). Clearly

2m—1
(=)™ up| < 2lup(=8)"un| +C Y Vg ||V .

Jj=1

Equation (4.4) and Lemma imply that u,(—A)™u, is bounded in L*(£2). As a consequence of Holder’s
inequality for Lorentz spaces (Proposition (A.9)) and Lemma we find

—3°

LI a9 unlde < 19 )| Pl 2 < C:

Thus, (—A)™u2 is bounded in L}(Q).
Now, we apply Green’s representation formula to u2 to get

W2 (y) = / Gy(2)(—A) ™2 (2)dz,

for any y € Q where G, := Gy is defined as in (2.5). By the properties of G, (see Proposition , we
have o

! < —
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for any y, z € Q with z # y. Hence

lu2
|vaws4

Let z € Q and p > 0 be as in the statement. Then, we find

J

Cl=a)m ()],

n

ly — 2[!

_ m,,2
|Wﬁmg/‘l/Q(M7%MW@
(=) B,(z) JQ ly — 2|

1
= C’/ —A)"u2 (2 / ——dydz.
Q|( )" g ()] S

1 1
/ T—dy < / ———dy = Cp*™ !,
B,(x) ly — z| B, () ly — z|

and (—A)™u?2 is bounded in L'(Q2), we get the conclusion. O

P

Since

4.3 The behavior on a small scale

Let uy, pn and z, be as in (4.2)), (4.7), (4.8). In this subsection, we will study the behavior of w, on
small balls centered at the maximum point x,,. Define r,, > 0 so that

merimAnuieﬁ"”i =1, (4.12)

with way, as in (2.1).
Remark 4.7. Note that, as n — 400, we have 2™ = o(u, %) and, in particular, r, — 0.
Proof. Indeed, by (4.4), we have

1 1
Ap€Bntn — eBniid

/m&eﬁnuidz < [unllZz(o)-

Since u, — 0 in L?(Q), the definition of r2™ yields r2™u2 — 0 as n — +o0. O

n

Let us now consider the scaled function

M (Y) = pn (Un(Tn + 1Y) — pn), (4.13)
which is defined on the set
Q= {y eR*™ : z, +r,ycQ}.
The main purpose of this subsection consists in proving the following convergence result.
(z,,00)

Proposition 4.8. We have d " — 400 and, in particular, Q, approaches R®*™ as n — +oo0.
Moreover, n, converges to the limit function

mo(y) = _% log (1 + |y4|> (4.14)

in C2MVY(R2™Y for any € (0,1).

loc

In order to avoid repetitions, it is convenient to see Proposition [4.8| as a special case of the following
more general result, which will be useful also in the proof of Proposition [4.15
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Proposition 4.9. Given two sequences &, € 0 and s, € R, consider the scaled set 0, = {y e R?™ .
Tnt+sny € Q} and the functions vy, (y) := un(Zn+$nYy) and M, (y) = fn (Vn(y) — fin), where iy = up(Ty).
Assume that

1. Woms2MApfiePrin =1 and |fin] — 400, $2™ — 0, as n — +00.
2. For any R > 0 there exists a constant C(R) > 0 such that

Un

Z <C(R) and v2—j%2<C(R) inQ,nN Bg(0). (4.15)

Then, we have M — +00 and 7= — 1 in CfOT_l’W(RZm), for any v € (0,1). Moreover 7, — 19 in

0120?_1”(]1@2’"), where 1o 1s defined as in (4.14]).

Note that the assumptions of Proposition are satisfied when %, = x, and s, = r,. Hence,
Proposition [.8] follows from Proposition £.9] We split the proof of Proposition [.9] into four steps. The
first two steps (Lemma and Lemma are stated under more general assumptions, since they will
be reused in the proof of Proposition |4.16]

Lemma 4.10. Given two sequences &, €  and s, € RT, let Q,, and v, be defined as in Proposition
, Let also X be a finite (possibly empty) subset of R*™\ {0}. Assume that

1. 8, =+ 0 and D, ;= max |V'v,(0)] = +oo asn — +o0.
0<i<2m—1

2. For any R > 0, there exist C(R) > 0 and N(R) € N such that
lvn(y)| < C(R) Dy, and  [(=A)"vn(y)| < C(R)Dn,

for any y € Q. g == Q, N Br(0)\ U B1(§) and any n > N(R).

£ex
Then, we have
Ty O
lim (@0, 00) = +00.
n—-+oo Sn
Proof. Let us consider the functions wy,(y) := U”D—(”y). First, we observe that the assumptions on z,, and
Sp, imply
wy, = 0(1), (4.16)
and
(=)™ w,] = O(1), (4.17)

uniformly in Qn R, for any R > 0. Moreover, by Sobolev’s inequality, for any 1 < j < m we have that

J — DLy A2 _ -1
IVl 2y | = D IVl 2 ) < OO 1A wall 2@y = O(DLY) (1.15)

Then, using Holder’s inequality, (4.16)) and (4.18)) give
HwnHWmvl(fzn,R) =0(1). (4.19)
Now, we assume by contradiction that for a subsequence

(7, 090)

5 — Ry € [0, +OO)

Then, the sets §,, converge in Cre. to a hyperplane P such that d(0,0P) = Ry. For any sufficiently large
R > 0 and any p > 1, using (4.17)), (4.19]), Proposition and Remark we find a constant C' =
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C(R) such that [|wnlyy2m.n@ L) < C. Then, Sobolev’s embeddings imply that [|wy|[cem-1.@ ) < C;
n B n B
for any v € (0,1). Reproducing the standard proof of the Ascoli-Arzeld theorem, we find a function

wo € C’ZQOT_I"Y (P \ X) such that, up to a subsequence, we have
Wy, — W in C2m1(P\ %) (4.20)
and ‘ ‘
Viw, (&) = VVwo(§), 0<j<2m—1, (4.21)

for any £ € P\ ¥ and any sequence {&, }nen such that &, — €. Since w,, = 0 on €, and €, converges

to P, (4.21) yields wg = 0 in P \ ¥. Furthermore, (4.18) and (4.20) imply that Vwy = 0 in P\ X.
Therefore, wyp = 0 on P \ X. But, by definition of D,, and w,,, we have

)
-1
o max |Viw, (0)] = 1,

which contradicts either (4.20) (if Ry > 0) or (4.21) (if Ry = 0). O
Lemma 4.11. Let $,,, #n, Un, On, Dn and ¥ be as in Lemma . Then, |v,(0)] = +00 and

Un . 2m—1 2m
—1 in C (R Y),
’Un(O) loc ( \ )
for any v € (0,1).
Proof. Consider the function w,,(y) := U"Di(y), y € Q,. As in [{@.16), [@.17) and (@.18), we have
w, = 0(1) and (—A)"w, = O0(1), (4.22)

uniformly in Br(0) \ Ugex, B (§), for any R > 0, and

1
R

By (4.22)), Proposition Sobolev’s embeddings, and (4.23)), a subsequence of w,, must converge to a

constant function wy in Cp'™"7(R?™ \ ), for any v € (0,1). In particular, we have |V7w, (0)| — 0 for

any 1 < j < 2m — 1. Then, the definitions of D,, and w,, give

1= J =
o max V7w, (0)] = [wn(0)],

which implies that |v,(0)] = D,, — 4+o0 and that |wg| =1 in R*™ \ 3. Hence,

— 1 . 2m—1,v RQm ).
’Un(()) wn(O) - m C(loc ( \ )

O

Next, we let Z,,, s, fi, and 7, be as in Proposition [£.9)and we apply Lemma [4.6] to prove bounds for
Afjy, in L}, (R*™).
Lemma 4.12. Under the assumptions of Proposition[{.9, there exists a constant C > 0 such that
1A% 1 (Br(oy) < CRP™2,

for any R > 1 and for sufficiently large n.
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Proof. First, we observe that Z,, and s,, satisfy the assumptions of Lemma[4.10]and Lemma [£.11] Indeed,
equation (4.3), the definition of v,, and the assumptions on Z,, and s, yield v, = O(|f,|) and

2
(—=A)™v, = s2" N\ v, e’V + 2 au,
(¥ 2_~2
_ o1V g wiop2) | 2m
= Wom =y € + 53" aw, (4.24)
n

= O(lfin ') + O(s7" |finl),

uniformly in Q,.NB r(0), for any R > 0. Then, Lemma and Lemma imply that ,, approaches
R?™ and

S| in CPMY(R?™), for any v € (0,1). (4.25)
fin

Next, we rewrite the estimates of Lemma [4.6] in terms of 7j,. On the one hand, by Lemma there
exists C' > 0, such that

18U L2 (Br,,, @0)) < ClsnR)*™ 72,
for any R > 0 and n € N. On the other hand, we have
AU |1 (B, @) = 2l nAtnl| (B, @) = 20 VunlT2(sp,, G0
=257 (IlvnAvnllLl(BR(o» - I\WnH%z(BRm))) :

Then, we obtain
[vn Avnll L1 (Ba(0)) < CR™™ 72 + ||an||%2(BR(o))- (4.26)

By (4.25)) and the definition of 7,,, we infer

lvn Avnll L1 (BR(0)) = linl|AVA] L1 (BR(0) (1 + 0(1)) = ATl L1 (BR(0)) (1 + 0o(1))

> %HA'F]n“Ll(BR(O))a (427

for sufficiently large n. Finally, applying Holder’s inequality,
IVenllzs sy < IVonllZom zacon Bal' ™ < IVunlfon o) Bal' "7 < CR'"7. (4.28)
Since 1 — L < 2m — 2, the conclusion follows from (4.26)), ([.27), and (4.28). O

We can now complete the proof of Proposition

A(50,00)
Sn

Proof of Proposition[{.9 Arguing as in the previous Lemma, we have that — 400 and that

(4.25)) holds. Observe that (4.25) implies

_ s2m 1
(L+o0(1)sy™ fiy, = 7/3 o vn(y)dy = — up (@)dz = O([lunl|Z2i0)) = o(1).  (4.29)

Wam Wam J By, (#n)
Moreover, as in (4.24)), by the definitions of 7,, and v,,, and the assumptions on fi,, s, and Z,,, we get
(=A)"7j, = O(1) + O(s2™fiz,) = O(1), (4.30)

uniformly in Bg(0), for any R > 0. In addition, Lemma implies that A7, is bounded in L} (R*™).

loc

By Proposition and Sobolev’s embedding theorem, A7, is bounded in L2 (R?™). As a consequence
of (4.15)) and (4.25]), we have

C(R) > Urzz - ﬂi = (v = fin)(Vn + fin) = n(2 + o(1))
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in Bgr(0). Since 7,,(0) = 0, Proposition shows that 7}, is bounded in L{ (R?™). Together with

loc

(4.30), Proposition and Sobolev’s embeddings, this implies that 7, it is bounded 1211 0{207271’7 (R2m),
for any v € (0,1). Then, we can extract a subsequence such that 7, converges in C;..~ 7 (R?*™) to a

limit function ny € C>" 17 (R2™). Observe that, as n — +oo,

loc

n

=2
7] 2 n~n n t’n ~ — *
(=A™, = <1 + Z;’) (w%lle R + asff’ﬂui) — w%llem mo.

locally uniformly in R?™. This implies that 79 must be a weak solution of
(=)™ = Wy e,
e ¢ LY(R>™), (4.31)
To S 0,770(0) =0.
Solutions of problem (4.31)) have been classified in [33] (see also [22] and [5I]). In particular, Theorems
1 and 2 in [33] imply that there exists a real number a < 0, such that limy,|_, 1 Ano(y) = a. Moreover,
either a # 0, or no(y) = f% log (1 + %) , for any y € R?™. To exclude the first possibility we observe

that, if @ # 0, then we can find Ry > 0 such that |Ang| > %' for |y| > Ro. This yields

[ ity [ jamdy + S (72— B (4.3
BR(0) 70 (0) 2
for any R > Ry. But Lemma [{.12] implies
/B o |Ano|dy < CR*™2, (4.33)
R
for any R > 1. For large values of R, (4.33]) contradicts (4.32)). O

This completes the proof of Proposition [£.9] Now, we state some properties of the function 7y that
will play a crucial role in the next sections.

Lemma 4.13. Let ng be as in (4.14). Then, as R — 400, we have

wgﬂll/ e Mdy =1+ O(R™™) (4.34)
Br(0)
and 5 R
/ |AZ o |2dy = m log = + I, — H,, + O(R™?log R), (4.35)
Br(0) B 2
where H,, is defined as in (2.6)) and
In= [ m-aymdy =~ = L gy (4.36)
R2m Brwam Jram (4 + |y[2)?

is as in (4.9)).

Proof. First, using a straightforward change of variable and the representation of S>™ through the stan-
dard stereographic projection, we observe that

. q4m
268710 14 — —
e dy = / o Y = Wor,.
/R27n R2m (1 + ‘y|2)2m
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Since €28 0 = O(ﬁ) as |y| = +oo, we get (4.34).
The proof of (4.35) relies on the integration by parts formula of Proposition Forany 1 <l <m-—1,

we have

| |2k

Alno(y 5*2 kl4+|‘

)20 aky = (—1)H(1 —1)! (li) (WZT:j-k 1_)!1()m!(m l_Jrl 61)1)1241%,

and

ly[*Fy

I
Al 2g0(y) = o D bk ey ki =
" : a1 Ok
B 2 T )

S(k + 1)ak+1vl + (2]€ - 4[)&;@[ 0<k<I-—1,
72[&11 k=1

Note that a;; = —Qf(mJ, where IN(mJ is as in (2.2)). In any case, for 1 < j < 2m — 1, we find

_2m e ( ) y|-2

as |y| — 400, where K_ ; and e; are defined as in (2.3) and (2.4). Integrating by parts, we find
m,5 J

A%Uo

/ |AZ ]2 dy—/ no(—A)™no dy — Z/ 1)7tmy, . AQUOAM G- 1n0da'
Br(0) BR(O) OBR(0
On 9Bg(0 2mK amo1 = (W;)ninil imply

e -9
v UOAQ 5 1770 — ( log E + O( )) ( me)zm;lRl—Zm + O(R—2m—1)>

3 B*
_ ﬂ}y—zm (_ lo gﬁ +O(R 210gR)) )
wWam—1 B*

and, for 1 < j <m — 1, that

J m—j— 2 . . 2 . .
V- A§770A2 o) 1770 _ (_me %R—J + O(R—]—2)) (_ mK 2m—2j—1R1+j_2m + O(Rj—Qm—l))

ﬂ* ﬂ* m,
2m\ * 1-2m —om—1
= ﬁ* Km’%’Km’Qm;jflR —|—O(R )
Hence, we have
m R
/ |AZ | dy = / no(—=A)™no dy + . log — H,, + O(R?log R). (4.38)
Br(0) Br(0) B

Finally, since no(—A)™no decays like |y| =% log |y| as |y| — +oo, we get
/ no(—A)"no dy = I, + O(R™*™log R),
Br(0)

which, together with (4.38]), gives the conclusion. O
Remark 4.14. Proposition[{.§ and Lemma [{.13 imply

1. lim A2 P ndr =1+ O(R™*™).

norteo Ban(-T'n)
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2. lim )\nununeﬂ"“idaﬁ =1+ O(R_2m).

M By o
: Bru? _ —2m
3. lim Antin|un|e”rde =1+ O(R™=™).
notee BRTTL(‘—ETL)
4. lim /\nuieﬁ""ida: =14+ O(R™*™).
norteo BRTn(In)

m

Indeed, all the integrals converge to w;l / 2870 dy.
Br(0)

4.4 Estimates on the derivatives of u,,

In this subsection, we prove some pointwise estimates on wu,, and its derivatives that are inspired from
the ones in Theorem 1 of [32] and Proposition 11 of [36] (where the authors assume a = 0 and u,, > 0).

Proposition 4.15. There exists a constant C > 0, such that
|z — xn|2m)\nu72165"“i <C,
for any x € Q.

Proof. Let us denote
2
L, :=sup |.%‘ - -Tn|2m)‘nui(m)eﬁnun(x)' (439)
z€Q

Assume by contradiction that L,, — 400 as n — 4o00. Take a point Z,, € {2 such that
Ly = | — @0 |2 A2 () €5 n @) (4.40)
and define fi,, := u, (%) and s, € RT such that
Wam 82 A 2 P = 1. (4.41)

We will show that Z,, and s,, satisfy the assumptions of Proposition Clearly, since L,, — 400, (4.40)

and (4.41) imply that

lfin] = +00  and @ — +00. (4.42)
n

In particular, s, — 0. Let v, and €, be as in Proposition Using (4.39) and (4.40)), we obtain

Un o2z oyl

< 4.43)
i, Y — ynl*™ (
for any y € Q,,, where y,, := % Since |y, | — 400, (4.43) yields

’U2 2_ =2 ~

—ge i < C(R) in Q, N Br(0), (4.44)

n

for sufficiently large n. Thanks to (4.44)), we infer that
Un,

P <C(R) and 02— <C(R)
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on the set {|v,| > |jin|} N Bg(0), and therefore on Q,, N Bg(0). Then, all the assumptions of Proposition
[ are satisfied. In particular, as in Remark by Proposition [£.9) and Lemma we get

lim )\nufleﬁ"“irdac =wyt / e dy =14+ O(R™2™). (4.45)
Br(0)

m
=450 Brg (@n)

Besides, if 7, is as in (4.12)), we have 7, < s, and, by (4.42), Bgs, (Zn) N Bgr, (x,) = 0, for any R > 0.
Then, (4.4)), Remark and (4.45) imply

1= lim /\nuieﬁ"uidx > lim /\nuieﬂ""idﬂc =24+ O(R™*™),
n—=+oo Jo "4 JBry, (€0)UBRs, (#n)

which is a contradiction for large values of R. O
Next, we prove pointwise estimates on |V'u,| for any 1 <1 < 2m — 1.
Proposition 4.16. There exists a constant C > 0 such that
|z — xn|l|unvlun| <,
foranyx e Qandl <1< 2m—1.

The proof of Proposition follows the same steps of the ones of Propositions [4.9] However, in this
case it will be more difficult to obtain uniform bounds on w, on a small scale. For any 1 <1 < 2m — 1,
we denote

Ly = sup |z — o, | un || Vi, (4.46)
z€Q
Let x,,; € Q be such that
|, — xn|l|un(xn,l)vlun(xn,g)| =Ly, (4.47)
We define s, = |Tn1 — Tnl, fing = Un(Tn1), and yp; = ==L Up to subsequences, we can assume

Sn,l

Yni — Y € S*™ 71 as n — +o0. Consider now the scaled functions

Un,l(y) = un(mn,l + Sn,ly)7

which are defined on the sets Q,; := {y € R2™ . T, + Snay € Q). Observe that v, ; satisfies

{ (—A),, = sifwnvn,leﬁ"”?l +splavn, i Qpy, (4.48)
Upi =001 =...=0)" lvn,l =0, on 9, ;.
Moreover, Proposition [£.15] yields
A2 P < — ;,zlzm’ (4.49)
for any y € Q,,;, and can be rewritten as
L = [03,1(0)[|[V'05,1(0)] = [t 2|V 0,1 (0)). (4.50)

Remark 4.17. If L,,; — 400 as n — 400, then Lemma implies that s, ; — 0. In particular, (4.49)
gives
2
sit’l’)\nvn,le/a““"vl -0

as n — +oo, uniformly in \B% (¥;), for any R > 0. Indeed, if we choose a sequence {an}nen such

2
that a,, — +oo and s%”})\nane'@"“n — 0 as n — +o0, then we have

2m /vz 2m /a2
Syl AU g€Pnvnt| < sn,l)\naneﬁ" n,
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on the set {|vni| < an}, while (4.49) gives

2m 2 ﬂnvi
Syl )\nvmle i C

an B an|y_yn,l|,

2m V2
Sl )\nvmle*B" n,l

<

on the set {|vni| > anp}.

In the following, we will treat separately the cases [ =1 and 2 <[ < 2m — 1.

d(xn,1,00)

Sn,1

Lemma 4.18. If L, ; — +00 as n — +o00, then we have
Croe 1 R¥™\ {g,}), for any v € (0,1).

loc

— +o00. Moreover, Z”ll — 1 1n
mn,

Proof. Tt is sufficient to prove that x,, 1, $,,,1 and v, 1 satisfy the assumptions of Lemma@ and Lemma
with ¥ = {g;}. First of all, we observe that, for any R > 0, the definition of L, ; implies
[V, 1| SC(R)Lp1 in Q1 \ B (¥;). Then, a Taylor expansion and (4.50) yield

Ui,l < NiJ +C(R) Ly < C(R)Di,l (4.51)
in Q1 ﬂBR(O)\B% (71), where Dy, 1 := maxo<i<2m—1|V'v,,1(0)|. Moreover, by equation (¢.48), Remark
and (4.51)), we get

[(=A)"vp1] = 0(1) + s2avs,1 = o(1) + O(s3 Dy 1),

uniformly in Q.1 N Br(0) \ By ;). Finally, Remark gives s, 1 — 0, while (4.50)) and the condition
Ly — +oo imply D, 1 — +00. O
We can now prove Proposition for [ = 1.

Proof of Proposition[{.16| for | = 1. Assume by contradiction that L, ; — +o0o, as n — 4o00. Consider

the function z,(y) := W On the one hand, by the definitions of L, 1 and z, ;1 in (4.46]) and
Un,1

(4.47), and by Lemma we have

[Vun,1(0)[(1 + o(1))
|y - yn,l

[Von1(y)] < < C(R)[Vn(0)],

uniformly in Br(0) \ By (¥,), for any R > 0. In particular,
Valy) < C(R)  in Ba(0)\ By (7).

Since z,,(0) = 0, 2, is bounded in L2 (R?*™\ {7, }). On the other hand, arguing as in (4.29)), Lemma
implies that

Snritina = o(1),

and, using also (4.49)), that

AnS2Mw,, eﬁ"vi’l + as®muv, 1
(_A)mzn _ n,1Yn,1 n,19n,1 -0 () _ 0(1)’
[Vun,1(0)] fn.1 |V, 1(0)]

in Br(0)\ By (7,)-

By Proposition we find a function zp, harmonic in R?™\ {7, }, such that, up to subsequences, z,, — 2o
in CZ LY (R2 {77,}), for any 4 € (0,1). We claim now that zy must be constant on R?™ \ {7,}. To

loc

prove this, we observe that, by Lemma for any R > 0 there exists a constant C'(R) > 0 such that

||VU72171||L1(BR(0)) < C(R).
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Applying Lemma and (4.50]), we obtain

IV 1 o) = 2 / o1 V01 |y
BrO\B ) (@)

= 2[pn.1|(1 + 0(1))[[Von 1|

LA(BR(0)\B ), (7,)
=2L,1(1+ 0(1))||vzn||L1(BR(0)\B%(yl))-

Thus, as n — +00, we have

— 0.

C(R)
IVznllrsrone , @) < 7
R n,l

Hence, zp must be constant, which contradicts

[Vz0(0)| = lim |Vz,(0)] =1.

n—-+oo

O

We shall now deal with the case 2 <1 < 2m — 1. Since Proposition has been proved for [ = 1,
we know that L, ; is bounded, i.e.

|2 = 2pfun (2)[|Vun (2)] < C,

for any = € Q. Equivalently, given any 1 <1 < 2m — 1, we have

C
[t ()| Voni(y)] < T (4.52)
for any y € ,,;. In particular, yields
”vvi,l”Lm(Qn,l\B%(ﬂl)) < C(R), (4.53)
for any R > 0.
Lemma 4.19. Fiz any 2 <1 <2m —1. If L,; — 400 as n — +o0o, then we have 201,00 _, +00.

Sn,l

Moreover, Z:’l — 14n CPYY(R2\ {7,)), for any v € (0,1).

Proof. As in Lemma we show that z,,, s, and v, satisfy the assumptions of Lemma and

Lemma [4.11} with ¥ = {7;}. Let us denote D,,; := maxo<i<2m—1|V'0n(0)|. Note that (4.50) and the
4.53)

condition L,,; — 400 imply D,,; — +oc. Then, for any R > 0, a Taylor expansion and (| yield
vp, < pa,+C(R) < C(R)D}, (4.54)
in QN Br(0) \ By (y;). Moreover, by equation (4.48), Remark and (4.54), we get
[(=A) v, = o(1) + Sfﬁavn,l =o(1) + O(sffffDn)l),
uniformly in €y, N Br(0) \ B (7). O

Proof of Proposition[{.16] for 2 <1< 2m — 1. Assume by contradiction that L,; — +oco as n — +oc.

Consider the function z, := f@l’;fzg)" Observe that (4.50)), (4.52)), and Lemma yield

[Van(y)] <

0, (4.55)



uniformly in Br(0) \ By (7,), for any R > 0. Since z,(0) = 0, (4.55)) implies that

2o | <
| n‘ =7

— 0,

n,l

uniformly in Bg(0) \ B 1(#;). Similarly, as a consequence of equation (4.48), (4.49), and Lemma 4.19]

one has

C(R)
—A)" n < T
(-8 < 0
in Br(0) \ By (7). Therefore, up to subsequnces, z, — 0 in CEm=YY(R?™\ {5,}), for any v € (0,1).
Since |V'z,(0)| = 1 for any n, we get a contradiction. O

4.5 Polyharmonic truncations

In this subsection, we will generalize the truncation argument introduced in [2] and [I§]. For any A > 1
and n € N, we will introduce a new function u/s whose values are close to £ in a small ball centered at
Z,, and which coincides with u,, outside the same ball.

Lemma 4.20. For any A > 1 and n € N, there exists a radius 0 < p} < d(z,,00Q) and a constant
C = C(A) such that

1wy > 53 in Bya(zy,).

C
3. |Vlun| < W on OBpa(zy), for any 1 <1 <2m — 1.
HUn Pz, "

A
4. If ry is defined as in (£.12)), then 2= — 400 as n — +oc.

Proof. For any o € S*™~!, the function ¢ — wu,(z, + to) ranges from s, to 0 in the interval [0, ()],
where ¢ (o) :=sup{t >0 : z, + so € Q for any s € [0,t]}. Since u,, € C(£2), one can define

tA(o) == inf{t € [0,¢%(0)) : un(an +to) = % .

Clearly, one has 0 < t2(0) < ti(0) and u,(z, + ti(0)o) = &, for any o € S?™~1. Moreover, the
function ¢ +—— t(0) is lower semi-continuous on S?”~!. In particular, we can find @} such that
tA@4) = min t2(c). We define p2 = t4(7,), and y? := z, + pa? € 0B,a(zy). By construction

" ocEes2m—1
we have, 0 < p2 < d(x,,09), u, > B on B,a(zy,), and un(y) = Ea . Thus, applying Proposition
we get

CA
pn(p)t
on dB,a(zy), for any 1 <1 < 2m — 1. Furthermore, for any x € 9B, (), one has

|Viu,| <

n C
fn () — B2 = Jun (@) — un(y)| < 7pt sup  [Vu,| < —.

A 0B, 4 (z.) fin
Finally, if 7, is as in (4.12), Proposition and (4.13) imply that u, = p, + O(u,; ') uniformly in

B,, r(zy), for any R > 0. Therefore, for sufficiently large n, we have 7, R < p2. Since R is arbitrary, we
get the conclusion. O
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Let p2 be as in the previous lemma and let v* € C?"(B,a(z,)) be the unique solution of
Pn n pih

(—A)™vA =0 in Ba(wy),
vt = Ou,  on OB,a(wn),0<i<m—1.

We consider the function A (2.)
A vy in Bpﬁ Tn),
un (7)== { u,  in Q\ Bja(wn). (4.56)

By definition, we have v € HJ*(2). The main purpose of this section is to study the properties of u:}.

Lemma 4.21. For any A > 1, we have

uniformly on Bpa(xy).

Proof. Define 0, (y) := v (zn + piay) — L& for y € B1(0). Then, by elliptic estimates (Proposition [A.2)),
we have

3
L

Hn ~ ~
o = Iz (8,4 @) = [TnllzeBao) < C Y IV nll =@, o))

I

3
L

(Pﬁ)l||vlvr’?“Lw(aBﬂ£ (@n))

I
Q
I

3

b I

C (o) IVl 05,4 (2

By Lemma we know that (p,‘;‘)lHVlunHLoo(aBpA (@n) S

Proposition 4.22. For any A > 1, we have

and the proof is complete. O

=

n

m 1
limsup/ |AT u? Pde < —.
Q A

n—-+oo

Proof. Since ufy = uy, in Q\ B,a(xzy), uj} is m—harmonic in B,a(zy), and 8ju; = 0ju, on 0B,a(xy)
for 0 < j <m — 1, we have

/ A% (u, — ul)|Pde = / A% (u, — u) A% u, dx
Q B‘,A (zn)

" (4.57)

= / (Un — uD)(=A)™u,, dz.
Bpé (zn)

As a consequence of Lemma we get (—A)™u, > 0in Bya(z,). Therefore, the maximum principle
guarantees u, > u’ in Bya(xy). Hence, if 7, is as in (4.12), we have

/ (ty, — u)(—A)™u,da > / (Un, — u)(—A)u, da
Bpé (xn) BRTn (xn)

(4.58)
> / (wp, — u,’?))\nuneﬁ"“idu’c,
BRry, (n)

26



for any R > 0. By Lemma (4.12), and Proposition we find

/ (Up — uﬁ))\nuneﬁ""idx
BRrr, (Tn)

n fn ) Bo (w2225
="\ (un +In By O(M;1)> (un + n) ¢’ (1020 ”3L>dy (4.59)
Br(0) Hn A n

1 X
= wy (1 - ) / 2P dy + o(1),
A Br(0)

where 1, and ny are as in (4.13) and (4.14). Using (4.57)), (4.58), (4.59), and Lemma as n — +0o

and R — +oo we find

m 1
im i T (uy, — uN)Pdr >1— =, .
HEE&E/QW (1 — )P > 1~ (4.60)

Finally, since uZ is m—harmonic in B,a(z,), we have
7

1+0(1):/ |A% u,|?dx
Q
:/ |A%uﬁ|2dx+/ AT (u, — ufy) |2dx—|—2/A%uf~A
Q Q Q
:/ |A%uﬁ|2dm+/ IAZ (u, —uf) |Pdz.
Q Q

Thus, (4.60) and (4.61)) yield the conclusion. O

As a consequence of Proposition [£:22] we get some simple but crucial estimates.

Lemma 4.23. Let 0 < a < A\1(2) and let Sq g+ be as in (L.4). Then, we have

S

(tn — uj) )dw (4.61)

Sape =9/ + lim ——.
pe =2+ lim e

In particular, A\pp, — 0 as n — 4o00.

Proof. Fix A > 1 and let v be as in ([4.56). By Adams’ inequality (T.1])) and Proposition we know

that e#(42)” is bounded in LP(Q), for any 1 < p < A. Since uZt — 0 a.e. in 2, Theorem gives

lim ePrindy = lim ePn i)’ dg = 1. (4.62)
"m0 JO\B, 4 (an) nH JOB, 4 (n)

By Lemma uy > 5 on Bpa(x,). Hence,

A? A?
/ P gy < W2 ey < (4.63)
B

2 2"
Py‘? (zn) ‘Ltn BP%‘} (ﬁn) Anun

Moreover, for R > 0 large enough, Lemma (part |4) and Remark imply

lim sup/ ePrundy > lim sup/ ePrtndy = (1+ O(R™?™))limsup - (4.64)
n——00 Bn{%(mn) n—=+00 JB, g n—-+o0o )"ﬂ:u’n
From (1.2)), (4.62), (4.63), (4.64), and Lemma [3.4] we get
1 1
Q| +1i —— < 5,5+ < |9+ A% liminf .
By g = S = RTINS
Since A is an arbitrary number greater than 1, we get the conclusion. O
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We conclude this section with the following lemma, which gives L' bounds on (—A)™(unu,). This
will be important in the analysis of the behaviour of u,, far from x(, which is given in the next section.

Lemma 4.24. The sequence )\nununeﬂ"“i 1s bounded in Ll(Q), Moreover, )\nunune'@"“i — §g in the
sense of measures.

Proof. By Remark [£.14] it is sufficient to show that

lim lim sup A, ,un\un|eﬁ"“idx =0.
R=0 n—too Q\By, r(zs)

Let us denote f,, = Appintine®n. Fix A > 1 and let p2 and u2 be as in Lemma and (4.56). Then,
for any R > 0 and n sufficiently large, we have

/ faolde = | fo@ldo+ [ |fao)lde = 13+ 12,
Q\BTnR(mn) BPTALI (xn)\BrnR(xn) Q\Bp;‘;& (zn)
By Lemma (4.4), and Remark we obtain

Il < A/ )\nuieﬁ"“idx <A )\nuieﬁ”'“idx
B,a(@n)\Br, r(2n) N\Br, r(zn)

=All —/ )\nuieﬁ"“idx
B, r(zn)

= AO(R™*™).

Therefore,
limsup I} < AO(R™?™). (4.65)

n—-+oo

For the second integral, we observe that Proposition and Adams’ inequality imply that eBn(u)? g
bounded in LP(Q), for any 1 < p < A. In particular, applying Holder’s inequality and Lemma we
get

AN2
I2 < / [fu(@)ldz < Npn )| oy [l e
Q\BP;‘;& (wn)

e (4.66)
< C)‘nﬂn”un”Lp%l(Q) =0,
as n — +o00. Since R is arbitrary, the conclusion follows from (4.65)) and (4.66]). O

4.6 Convergence to Green’s fuction

In this subsection, we will study the behavior of the sequence pu,,u,, according to the position of the blow-
up point zg. First, we will show that, if zq € Q, we have ppu, — Gq 4, locally uniformly in Q\ {zo},
where G 4, is the Green’s function for (—A)™ — «, defined as in (2.5)).

Lemma 4.25. The sequence pnuy, is bounded in Wi""(Q), for any p € [1,2).

Proof. Let v, be the unique solution to

(=A)", = )\nununeﬂ”“i =:fa in Q,
Uy =0y =...=0" ty, =0 on IN.

By Lemma we know that f,, is bounded in L!(€). By Proposition we can conclude that v,
is bounded in W;"?(Q) for any 1 < p < 2. Define now wy,, = fi,u, — v,. Then w, solves

(=A)™w,, = aw, + av, in Q,
Wy, = 0w, =...=0" 1w, =0 on .
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If we test the equation against w,, using Poincare’s and Sobolev’s inequalities, we find that

”wn”%{(’)ﬂ(ﬂ) = QHU’HH%?(Q) + a/ﬂwnvndx < O‘llwnH%?(Q) + alwnllL2(@) vl L2(0)

e 5 e
< —== n m T n m n
=< Al(Q)”w ”HO @ T N Q) lwnll zg @ lonll L2(0)
@ 2
< m”wnHHé”(Q) + Cllwn g 0)-
Then,
Jeon -] <C
nll vy (9) N ) =
which implies that w,, is bounded HJ"(€2). This yields the conclusion. O

Lemma 4.26. Let xg be as in (4.8). If o € Q, then we have:
1. pipn = Go gy in Wo"P(Q) for any 1 <p < 2;

2. fintiy = Go g in CETHY(QN {z0}).

loc

Proof. Fix 1 < p < 2. By Lemma [4.25] we can find a € W;"?(Q) such that p,u, — @ in W5"P(Q).
Let ¢ be any test function in C2°(2). Applying Lemma and the compactness of the embedding of
WP () into L'(2), we obtain

/ (Lt Antn €% + g un )pda = (o) + a/ g dr 4 o(1).
Q Q

Hence necessarily @ = Gy,4,. To conclude the proof, it remains to show that p,u, = Ga 5, in Cﬁg‘*l”(ﬁ\

{zo}). By elliptic estimates (Proposition [A.G)), it is sufficient to show that (—A)™(u,u,) is bounded in
L*(Q\ Bs(z0)), for any s > 1, § > 0. This follows from Lemma [4.4] and Lemma O

Lemma [£.26] describes the behaviour of i, u, when zo € Q. The following Lemma deals with the case
xo € 0. In fact, we will prove in the next subsection that blow-up at the boundary is not possible.

Lemma 4.27. If xg € 0%), we have:
1. pipun — 0 in WiP(Q) for any 1 < p < 2.
2. pptty, — 0 in CP QN {xo}), for any v € (0,1).

Proof. As before, using Lemma and Lemma we can ﬁnzd 1116 W"*(Q), p € (1,2), such that
pntn, — @ in WIP(Q) for any p € (1,2) and ppu, — @ in C; " 7(Q\ {zo}), for any v € (0,1).
Moreover, as n — +00, we have

/(unknuneﬁ"“i + apnuy)pdr = a/ e dx + o(1),
Q Q

Then, @ is a weak solution of (—A)™a = au in Q. Since u € Wy"(Q), elliptic regularity (Proposition
A.4)) implies u € W3™P(Q), for any p € (1,2). In particular, we have @ € H{*(£2), and

@l g ) = all@lzq)-

Since 0 < a < A\1(R2), we must have @ = 0. O
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4.7 The Pohozaev identity and blow-up at the boundary

In this subsection, we prove that the blow-up point zy cannot lie on 0€2. The proof is based on the
following Pohozaev-type identity.

Lemma 4.28. Let Q C R?*™ be a bounded open set with Lipschitz boundary. If u € C*™(Q) is a solution

of
(=A)"u = h(u), (4.67)

with h : R — R continuous, then for any y € R*™ the following identity holds:

1

! / AFul(@—y) vdo(@)+ [ f(x)do(z) =
o0 o0

5 H(u(z))(z —y) - vdo(z) — Qm/QH(u(a:))dx,

oN

where H(t) := fg h(s)ds and

[

m

fla) =3 (~1)mHiy. (A%((x ) VU)AQ"‘?“U) .

=0

Proof. We multiply equation for (z —y) - Vu and integrate on {2 to obtain
/Q(x —y) - Vu(—A)"udr = /Q(a: —y) - Vuh(u)dz. (4.68)
On the one hand, using the divergence Theorem, we can rewrite the RHS of as
/Q(x —y) - Vuh(u)de = / (x —y) - VH(u)dx

Q

:/Qdiv((x—y)H(u))dx—Zm/QH(u)dx

= - Hu)(z—y) -vdo(z) — Qm/QH(u)dac.

On the other hand, we can integrate by parts the LHS of (4.68]) to find
/(x—y)~Vu(—A)mudx:/ A% ((x—y)-Vu) AT udr + fdo.
Q Q a0

As proved in Lemma 14 of [35], we have the identity

NB

A% (z—y) Vu) ATy = %div ((z — y)|A%u|2) .

Hence, the divergence theorem yields

/Q(x—y)~Vu(—A)mudx= f/(m(x—y)~1/|A%u\2dcr(x)+/aQ fdo.

O

We now apply Lemma to u, in a neighborhood of zy, and we use Lemma to prove that xg
must be in 2. A smart choice of the point y is crucial to control the boundary terms in the identity. This
strategy was first introduced in [43] and was applied in [35] to Liouville equations in dimension 2m.

Lemma 4.29. Let xg be as in (4.8). Then xg € Q.
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Proof. We assume by contradiction that zo € 9Q. If we fix a sufficiently small § > 0, we have that
3 <v-v(z) <1 on 82N Bs(xp). Then we can define

L famm(zo) A% u, |2 (x — x) - vdo(z)

n «— m and Yn ‘= X _|_ an(Z‘o)-
fasmBa(xO) |AZ up, |2v - v(xg)do(z)

Observe that |y, — x| < 2. Applying the Pohozaev identity of Lemma on s = QN Bs(xg), we
obtain

1 m
5/ AT u, (2 —yn) -vdo(z) + [ fu(z)do(z)
s Qs (4.69)
= H, (un(x))(x — ypn) -vdo(x) —2m |  Hp(uy(x))dz,
895 QJ
where H,(t) = ﬁeﬁntz + 2t%, and
m—1 . ) i1
fn = Z(—l)mﬂu- (A%((x —yn) - Vu,) AT 2 un) .
7=0
Observe that the definitions of y, and p,, imply
/ AR w2z — yn) - v do(z) = 0, (4.70)
90N Bs (x0)
and thus, by Lemma [4.27] we have
[ 8% —y) viola) = [ A%, 2@ = o) - v do(z) = o(iiz?). (4.71)
804 QNaBs(x0)

Similarly, since f,, = —|A% u,|2(z — yn) - v on 9Q N Bs(xg), applying (4.70) and Lemma we get

ful)dota) = [ fu(e)dote) = ol (@12
Qs QNOBs(x0)
Furthermore, we have
[ty o) = [ i) o4 [ ) o)
0Ns QﬂaB(s(ajo) 89(’135(@3)

= I6,n + 0(”772)7

where I, = fagé (x — yn) - vdo(z) = O(9) uniformly with respect to n. In particular,

An
Holn () = o) vido(a) = 32 [ eia ) vio(o) + 5 [ W2 (& — yn) - wdo (1)
N5 n JoQs QﬁaBg(xo)
A _
= 55 Ton+ oli?).
(4.73)
Finally, we have
A
/ Hn(un(x))dxz—"/ emuirdx—i—g/ u?dzx
Qs 26n Ja, 2 Ja, (4.74)
An / o . '
= — ePntndr + o .
2B o (k")
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Therefore, (4.71)), (4.72)), (4.73), (4.74) allow to rewrite the identity in (4.69) as

At <2m/ ePrindy — L;,n> =o(1). (4.75)
Qs
Lemma ([42) and Lemma[3.4] assure
/ Prindr = F, (up) — / eI ide — Sape — |\ Bs(x0)| = Sapr — 9 >0,
Qs Q\Bs (zo)

as n — +o0o. Then, for ¢ sufficiently small, the quantity st P dy — I,,s is bounded away from 0.
Hence, the identity (4.75) implies A\,u2 — 0 and, since I,, s = O(),

)\nui/ P dy = o(1). (4.76)
Qs
But (4.76]) contradicts Remark since for any large R > 0 one has

)\nui/ ePrindy > )\n,ui/ ePrindy =1+ O(R™2™).
Qs Ban (wn)

4.8 Neck analysis

In this subsection, we complete the proof of Proposition 4.2| by giving a sharp upper bound on ——-.
nit
Let us fix a large R > 0 and a small § > 0 and let us consider the annular region !

An(R)0) :={z €Q:r,R < |z —z,| <},

where r,, is given by (4.12)). Note that, by Lemma we have A, (R,d) C Q, for any 0 < § < d(zg,00)
and any sufficiently large n € N. Our main idea is to compare the Dirichlet energy of u, on A, (R,J)
with the energy of the m—harmonic function

2m
B* i
As a consequence of Proposition and (4.13), on 0Bg,, (2, ), we have

Wh(z) = —

log |z — x4,

Mo (55) . 2m R O(R™?) 1
unx:Mn+7n+0Mn = Mn — * logi—i_ +O/'Ln )
(@) fin (k") Brpn 2 fin (k")
as n — 4oo. Similarly, using also (4.37)), we find
] A%no(l;&) , 2mK, O(R—7-2 _
Abuy(a) = T o) = S ]

)2
vy el N e
B* 17, pin R T b,

for any 1 < j < 2m — 1, where e, ; := e;(x — x,) with e; is as in (2.4). The function W, has an analog
behaviour. Indeed, remembering the definition of r,, in (4.12)), we get

_ bPn

J
Tnltn

2m 1
W,(z) = —t, — log R + log (w m)\n,ui , 4.77
) = et~ B Gy 108 (amAntn) (4.77)
and, by (),
J Qme i
AW, = —— e, ), forany 1 <j<2m—1, (4.78)
/B*M'ILT%,RJ
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on 0Bpgy, (2,,). We can so conclude that, as n — 400, on dBg,, (x,), we have the expansions

Bn) 1 ( 2°m ) O(R™?) 1
Up —Whp=1——=— | un + lo + +o(p, ), 4.79
(1= 5 ) ot g ton (o ) + 2 ol (4.79)
and )
; J
A2 (up —W,) = % +o(r,ut), forany 1 <j <2m — 1. (4.80)
Tn:un

Similarly, on 0Bs(x,), we can use Lemma and Propositon to get
Coz . O(9)

Uy — W, = + —= 4o, 1), 4.81
Hn Hn ( ) ( )

and o1
A% (uy, —W,) = N( ) +o(pu, b, for any 1 <j <2m — 1. (4.82)

Here we have also used that Ilz:i;“ — 1, uniformly on 9Bs(z,). The asymptotic formulas in (4.77])-

[4-82) allow to compare ||AZ uy| 124, (rs)) and [|AZ W, 124, (r,s)- Since the quantity A, u2 appears
in (4.79)), this will result in the desired upper bound.

Lemma 4.30. Under the assumptions of Proposition[{.3, we have

lim 1 < £2m 5" (Cano—=Im)

Proof. First, Young’s inequality yields

w3

IAZ w2 (a, (roy) = IAEWallZ2(a,msy = 2/,4 - AF (upy = Wy) - AEW,da. (4.83)

Integrating by parts, the integral in the RHS equals to

m—1

A% (U —W,) - AZW, dx = —/ m”u A% Uy — Wh)A
/AW) (tn = W) > (- (a%( )

04 (R0) [Z

2m—j—
2

lwn) do. (4.84)

22m

On 9Bgy, (zn), by (4.78), (4.79), (4.80), and the explicit expression of

Let us denote, A,, := I W

Kamo (see (2.3)), we find

2m—1 2 n 1 O(R™? Km 2m—1
(un_W’n)ATWn'V:_ m(l_ﬁ_‘_ IOg(A )+()+O(:U’n2)>(72

* * * 2 n 2 2m—1
= _ 12 log (A, -2
st (17 5 g o)+ 2 ot ).
and, for 1 <j7<m—1,
j 2m—j—1 O(R™?
A2 (up —Wp)A™ 2 W, v = <(Hz) + 0(,u;2)> O(rnR)' 2™, (4.86)
Similarly, on dBs(zo), (2-4), (4.81) and (4.82) yield
2m—1 (71)m Oa z 0(5) 2
n—Wn A" 2 V= 20 s 4.
(up, — W) Wh - v T + 2 +o(p, %) (4.87)
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and

2m—j—1
2

A% (u, — W,)A

Wh-v= (Oﬂ(g) + 0(u;2)> O(s1Fi—2m) (4.88)

for any 1 < j <m — 1. Using (4.85]), (4.86)), (4.87)), (4.88)), we can rewrite (4.84) as

m m O(R™2) O
/ A% (uy, —W,) - AFW,de =T, + ( 5 )4 (2) +o(uy?),
A (R,S) n 125
with 5 o
r,:=1- ﬁ—z + 0 log (Ay,) — ;50 (4.89)
Therefore, (4.83) reads as
m m O(RiQ) 0(5) _
IAF wpl|72a, (roay) = IAT WallToca, ray) = 200 + ——5— + 2 oy ?). (4.90)

We shall now compute the difference in the LHS of (4.90)) in a precise way. Since ||up||o = 1, we have

m

1A% unlZaa, sy = 1+ alltn]2ey — / INTHLI I / INTRON
Q\Bs(z0) By, r(zn)

By Lemma and Lemma we infer

s CamlPa
||uﬂ||L2(Q) = 'ug +O(N’n )7

and

m 2
/ A% w, [Pde =y <a|Ga7m0 12200y — ﬁiff 1088 + Cay g + Hyn + O(8]log 8]) + 0(1)> .
\Bs (w0)

Moreover, Proposition [£.§ and Lemma imply

m 2 R
/ |AZ u,|?de = p,, > ( m log = + Iy — Hy + O(R™2log R) + 0(1)> .
By, k() B 2

Therefore,

m 2m 25 Capgo+1Im O(R2logR O(d]logd
1A% wnllT2a, (o)) =1+ 555 log 7 — — + ( 5 g )+ (9108 )

+o0 ;2.
By TR I3 It It (k")

The identity wamm—1 QB—mK;% =1 and a direct computation show that

2mK oy, m )2 5

1A WallTz(a, (r.s)) = @2m—1 (5*% log Br.

2m 6  DBn
B2 1 &5+ 5 + —— log (wamAnpi) -
Hence,
1A% wnllFea,may = I1AFWallioa, sy =Tn = 75 + P ol (4.91)

12 12 12
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with Ty, as in (4.89). Comparing (4.90) and (4.91)), we find the upper bound
I O(R 2logR) O(6|logé
f< m OU*logR)  OGllogd)
Ky Hn Hn

Since 3, < 8%, the definition of T',, in (4.89) implies

+o(p,?). (4.92)

1 C
Fn 2 Gy IOg An - L )
B, (An) 13,

Then, (4.92)) yields
log (An) < B*(Cozy — Im) + O(R™?log R) + O(8|log 8|) + o(1).
Passing to the limit as n — +00, R — +00 and § — 0, we can conclude

lim An < 6ﬁ*(0a,1‘071m/).

n—-+o0o

O

We have so concluded the proof of Proposition [4.2], which follows directly from Lemma [£.23] Lemma
9, and Lemma

5 Test functions and the proof of Theorem

In this section, we complete the proof of Theorem by showing that the upper bound on S, g+, given
in Proposition cannot hold. Consequently, any sequence u,, € M, satisfying (4.2]) must be uniformly
bounded in €.

Lemma 5.1. For any zo € R*™, and £,R,; > 0, there ezists a unique radially symmetric polynomial
De,R,u,zo Such that

. . r— X
0L o) = =04 (424 (172 ) 4 2

for any 0 < i <m — 1, where ngy is as in (4.14)). Moreover, ps r .z, has the form

log |z — x0|> on 0B:g(x0), (5.1)

m—1
ps,R,u,mo = 2 + Z Cj & R |:L' - x0|2j (52)
7=0

with
2 -
cole, R) = 76—”3 log(2¢) + do(R) and c;(e,R) = 2 R"%d;(R), 1<j<m—1,

where d;(R) = O(R™?) as R — 400, for 0<j<m—1.

Proof. We can construct p: gz, in the following way. Let di(R),...,dp—1(R) be the unique solution of
the non-degenerate linear system

m—1

Z G = ZT(—l)i(i ~ )= Rg)(R), i=1,....,m—1. (5.3)
] [142»1
Set also
~ o'm m—1
do(e,R,p) : = — (M2 +no(R) + o log(zsR)) - d;(R), (5.4)
j=1
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and

m—1
q(z) :==do(e, R, ) + Z dj(R)|z|¥.
Jj=1

If we define pe gz (2) == q (555°), then pe g .z, (2) satisfies (5.1) for any 0 < i < m — 1. Since, as
R — 400,

(4) N 2m
5*
and the system in (5.3)) is nondegenerate, we find d; = O(R™2) as R — +oo for 1 < j < m—1. Similarly,
we have

(—D)ii = D)IR+ OR™2), for1<i<m-—1,

~ 2
dole, R, ) = —pi® — ﬂ—m log(2€) + do(R),

where

2m R "~
do(R) = —no(R) — - log o Z
5 %7 o
and, by (5.4 and the asymptotic behavior at mﬁmty of no, do(R) = O(R™?2) as R — +oc. Then p. g .z,
has the form with co(e, R) := do (e, R, ) + p? and ¢;(e, R) := (¢R)~%d;(R). O
Remark 5.2. Observe that Lemma gives

2m -
Pe,R,p,zo T /142 + F log(Qe) < CR™2 and |A?p€,R7#7zo‘ < CEmefm—Q’

in Beg(xo), where C depends only on m.

Proposition 5.3. For any xg € 2, and 0 < a < \1(2), we have
Sa B> |Q| + WQm B ( aIO_Im)a

where Cq 4, and I, are respectively as in Pmposition and (4.306)).

Proof. We consider the function

z—xqg C
P (Ma ) + a7$0+¢a7;0(x)+ps(x) for [z — zo| < R,
Ue,a,mo (x) = : G )
Gawo(®) for |z — x| > R,
He

where 14 4, is as in the expansion of G, given in Proposition R. = |logel, pe is a constant that
will be fixed later, and p. := pe g, 4.z, 15 the polynomial defined in Lemma@ To simplify the notation,
in this proof we will write u. in place of u o 4, Wwithout specifying the dependence on o and zg.

Note that the choice of p. (specifically ) implies that, for sufficiently small ¢, u. € HJ" ().
Moreover, we can write u, = %, where

Tr—xg 2 . _
i (l’) = { Tlo ( € ) + 004@0 + wa,ro(x) + Pe + g if |x xO‘ <eR., (5.5)

Ue Ga.zo if |z — x| > eRe,

is a function that does not depend on the choice of p., because of Lemma In particular, if we fix
pe = ||tic|lo, we get |luella = 1, and so u. € M,. In order to compute Fg~(u.), we need a precise
expansion of u.. Observe that, by Lemma the function n.(z) := o (”” ”0) satisfies

/ |A%n5|2dx:/ |A%n0\2d$
B.r, (z0) Br, (0)

2 . _
_ ,BT log % I, — Hy + O(R:21og R.).

(5.6)
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Since Y4 2, € C*™71(Q), we have
/ |A a0 Pdz = O™ RZ™), (5.7)
BERg (10)
Remark gives |[A% p.| = O(e™™RZ-™72) in B.g_(wo). Therefore,
[ atnpas—owmt. (5.8)
Ber (%0)
Using Holder’s inequality, (5.6 and , we find

/ ( )A%ns'ﬁ%%,zodwé IAZ el 22 (B (20)) 1A Va0l L2(B.n, (20))
B:.r(x0

(5.9)
= O(e™R™log? R.).
Similarly, by (5.6), (5.7) and (5.8)), we get
/ A%n, - A% p.dr = O(R? log? R.), (5.10)
B:r. (z0)
and
/B - A% p, - AT, pode = O(e™R™2). (5.11)
eR: T
By (5.6), (5.7), (5-8), (5.9), (5.10) and (5.11)), we infer
m 2 R.
/ A% Pdr = 2 log M 4 1, — H,, + O(R-?log R.).
B.r, (z0) B 2
Furthermore, applying Lemma we have
/ A% 2de :/ AZ Gy, Pde
Q\Ber, (%0) Q\B:cr, (z0)
2m
= _F log(eR:) + Ca,wo + Hm + af|Ga gz, ”%2(9) + O(eRc|log(eR:)|).
Hence,
m 2 _
/Q A% G 2dz = _FT 10g(22) + Caay + I + 0| Gawo |20y + O(R2log Ro). (5.12)

Finally, since (5.5) and Remark([5.2] imply @. = O(|loge|) on B.g_ (7o), and since Gz, = O(|log |z —z0||)
near xg, we find

||ﬂs\|%2(n) = ||G067I0||2L?(Q\BERE) + O(EQngm 108;2 €)

(5.13)
= [Gaollfz (@) + O™ R2™ log? e).
Therefore, using (5.12)) and (5.13)), we obtain
2 ~ 2 2m —2
pz = |te|l; = —ﬁlog(%) + Cazo + I + O(R " log R.). (5.14)

We can now estimate F«(uz). On Beg,(x0), by definition of u., we get

T —
ug > Ng +2 (770 ( - O) + Cozo + Yo,z (T) —|—p€(x)> :
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Then, Lemma Remark and , give

2m

B

Hence, using a change of variables and Lemma {4.13
1

/ P Wi dy > e (Camo=In) (1 4 O(RZ?log RE))/ 28" dy
Ber. (o) 2 B, (0) (5.15)

u? > — log(2¢) 4 27 (azg:no) + Cozg — Im + O(R-*logR.).

w2 * — _
= o e (G In) 4 O(R;21og R.)).

Outside B:rg, (z0), the basic inequality e’ > 1412 gives
B* 2

/ BT dy z/ eEG““’Odaz
Q\BSRE(IO) Q\Bng(mO)

) (5.16)
> 19|+ EHGQ,IO [Z2() +o(uz?) + O(*™ RZ™).
€

Since R. = O(u2), by (5.15) and (5.16)), we conclude that

Wom g - B _
Fp-(ue) 2 [0+ 37e” (Ooro™0) 4 25 | Go [y + 0(02)

In particular, for sufficiently small ¢, we find
wo * _
Sa,B* > Fﬁ* (ue) > |Q‘ + 2Tl 66 (CQ,JO Im).

We can now prove Theorem [[.2] using Proposition [£.2] and Proposition [5.3]

Proof of Theorem[1.3
1. Let B, up and py be as in (4.1), (4.2), (4.7) and (4.8). Since [|uplla =1 and 0 < a < A(Q), up

is bounded in H{*(2). In particular, we can find a function uy € HJ"(2) such that, up to subsequences,

up, — uo in HJ*(Q) and u, — ug a.e. in Q. The weak lower semicontinuity of || - || implies that
ug € M,. By Propositions H and we must have limsup u,, < C. Then, Fatou’s Lemma and the
n—-+oo

dominated convergence theorem imply respectively Fa«(ug) < +o0o0 and Fg, (u,) — Fg«(up). Since, by
Lemma 3.4} u,, is maximizing sequence for S, g, we conclude that So g+ = Fg«(uo). Then, S, g- is finite
and attained.

2. Clearly, if 8 > B*, using (1.1)), we get
Sa,8 > So,g = +00, for any o > 0.

Assume now o > A\ () and 0 < 3 < *. Let o1 be an eigenfuntion for (—A)™ on € corresponding to
A1(R2), i.e. a nontrivial solution of

(=A)™p1 = A (Q)pr in Q,
01 =0,01=...=0" 1p; =0 on IN.

Observe that, for any ¢ € R,
[ter]5 = 2 (A () = @) [[e1 |72 < 0.
In particular, t¢; € M,. Then we have

Sa.p > Fop(tpr) — +oo,

as t — +oo. O
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Appendix: Some elliptic estimates

In this appendix, we recall some useful elliptic estimates which have been used several times throughout
the paper. We start by recalling that m—harmonic functions are of class C'°*° and that bounds on their
L'-norm give local uniform estimates on all their derivatives.

Proposition A.1. Let Q@ CRY be a bounded open set. Then, for anym > 1,1 €N, v € (0,1), and any
open set V. CC Q, there exists a constant C = C(m,l,v,V,Q) such that every m-harmonic function u in
Q satisfies

[ullctr vy < Cllull L)

Proposition can be deduced e.g. from Proposition 12 in [32], and its proof is based on Pizzetti’s
formula [41], which is a generalization of the standard mean value property for harmonic functions.

If m > 2, in general m—harmonic functions on a bounded open set {2 do not satisfy the maximum
principle, unless 2 is one of the so called positivity preserving domains (balls are the simplest example).
However, it is always true that the C™ ! norm of a m—harmonic function can be controlled in terms of
the L norm of its derivatives on 0f).

Proposition A.2. Let Q C RY be a smooth bounded open set. Then, there exists a constant C = C(Q) >
0 such that

m

—1
lullem-1(@) < C Y IV ull L (a0,
1=0

for any m—harmonic function u € C™~1(Q).
We recall now the main results concerning Schauder and LP elliptic estimates for (—A)™.

Proposition A.3 (see Theorem 2.19 of [I1]). Let Q C RY be a bounded open set with smooth boundary,
and take k,m € N, k > 2m, and v € (0,1). If u € H™(Q) is a weak solution of the problem

{ (=A)"u=f inQQ,

Ou=h;  ondQ 0<j<m—1, -

with f € C*=2m7(Q) and h; € C*=37(99Q), 0 < j <m —1, then u € C*Y(Q) and there exists a constant
C =C(Q,k,v) such that

m—1

llullcrqv)y < C | I fller—2ma () + Z 2]l cr—iv 00
=0

Proposition A.4 (see Theorem 2.20 of [I1]). Let Q C RY be a bounded open set with smooth boundary,
and take m,k € N, k> 2m, and p > 1. If u € H™() is a weak solution of (A.1)) with f € Wk=2m»(Q)
and h; € Wkij*%’p(aQ), 0<j<m~—1, then u € WEP(Q) and there exists a constant C = C(Q,k,p)
such that

m—1

[ullwrr@) < C | I fllws—2mp@) + Z 1Rl s

1
7 (00
o (09)

In the absence of boundary conditions one can obtain local estimates combining Propositions and

[A74] with Proposition [A71]

Proposition A.5. Let Q C RY be a bounded open set with smooth boundary and take m,k € N, k > 2m,
p> 1. If f € WE=2m2(Q) and u is a weak solution of (—A)™u = f in Q, then u € VV/ZCP(Q) and, for
any open set V. CC €, there exists a constant C = C(k,p,V,Q) such that

lullwesry < C (I1fllwi-2me@) + lullLie) -
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Similarly, if f € C*¥=2m7(Q) and u is a weak solution of (—A)™u = f in Q, then u € C’lkog(ﬂ) and, for
any open set V. CC Q, there exists a constant C = C(k,~,V,Q) such that

||UHCM(V) <C (Hf”c’vfz'"w(ﬂ) + ”u”Ll(Q)) .

In many cases, one has to deal with solutions of (—A)™u = f in Q, with boundary conditions satisfied
only on a subset of 9. For instance, as a consequence of Proposition[A-4] Green’s representation formula,
and the continuity of trace operators on W™ (), one obtains the following Proposition.

Proposition A.6. Let Q C RN be an open set with smooth boundary, and fix xo,x1 € R*™ and p > 1.
For any §, R > 0 such that QN Br(z1) \ Bas(zo) # 0, there exists a constant C = C(Q, xg, x1,0, R) such
that every weak solution w of problem (A.1)), with f € LP(Q) and h; =0, 0 < j < m — 1, satisfies

[ullw2m.e@nBr@)\Bas (o)) < CULF L (@nBar(@\Bs(z0)) + 1Ullwm @\ Bar(@1)nBs (20)))-

Remark A.7. The constant C appearing in Pmpositz'on depends on Q only through the C*™ norms
of the local maps that define Bap(x1) N OQ. In particular, Proposition can be applied uniformly to

sequences {Qy, tnen, which converge in the CE™ sense to a limit domain Q.

The following Proposition holds only in the special case m = 1. It gives a Harnack-type inequality
which is useful to control the local behavior of a sequence of solutions of —Awu = f, when the behavior
at one point is known.

Proposition A.8. Let u,, € H'(Bg(0)) be a sequence of weak solutions of —Au,, = f, in Br(0) C RV,
R > 0. Assume that f, is bounded in L>=(Bgr(0)), and there exists C > 0 such that u, < C and
un(0) > —C. Then, uy, is bounded in L°°(B§ (0)).

Proof. We write u,, = v, + hy,, with h,, harmonic in Bg(0), and v,, solving

Av, = fr in Br(0),
vy, =0 on 0Bg(0).

By Proposition vy, is bounded in W2P(Bg(0)), for any p > 1. In particular, it is bounded in
L>(Bg(0)). Then, we have

hn = tn — 0n < C + ||vn]| o (Ba(0)) < C

and -
hn(o) = Un(o) - vn(o) >-C - an“L‘X’(BR(O)) > —C.

By the mean value property, for any z € B B (0), we get

- oN -
hp(z) —C = hy, —C)d
@)= C= g [t Oy

2N ~
wn R Br(0)
= 2N(hn(0) - é)

> *2N+lé.
Hence, h,, is bounded in L°°(B§ (0)). O

Finally, we recall some Lorentz-Zygmund type elliptic estimates. For any « > 0, let L(log L)* be
defined as the space

L(log L)* = {f : Q — R s.t. f is measurable and / [f]log™ (2 + | f])dz < +oo} , (A.2)
Q
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and endowed with the norm

I zosnye = [ |Fl1og®2-+11 o (A3)
Given 1 <p < 400, and 1 < g < 400, let L(p*q)(ﬂ) be the Lorentz space (see e.g. [47, Chapter V, §3])
L(p"I)(Q) ={u:Q — R : u is measurable and ||u||(p)q) < +oo}, (A.4)
where )
o, .
fullgayi= ( [ 6w @rar) L for 1< o (A5)
0
and )
[l (poc) = sup tru**(t), (A.6)
te(0,]2])
with )
u**(t) = t_l/ u*(s)ds, (A7)
0
and

u*(t) :=1nf{A >0 : |{|Ju] > \}| <t} (A.8)
Among the many properties of Lorentz spaces we recall the following Holder-type inequality (see [40]).
Proposition A.9. Let 1 < p,p’ < +o0, 1 < q,¢ < 400, be such that % + ﬁ = % + % = 1. Then, for
any u € LPD(Q), v e LE9)(Q), we have
luvllLr @) < llull g llvll e
As proved in Corollary 6.16 of [4] (see also Theorem 10 in [32]) one has the following:

Proposition A.10. Let @ C RN, N > 2m, be a bounded smooth domain and take 0 < a < 1. If
N

f € L(log L), and u is a weak solution of (A1), then V2"l € L(Nfl’%)(ﬂ), forany 1 <1<2m—1.

Moreover, there exists a constant C = C(Q,1) > 0 such that

||V2m_lu||(%,g) < Clfle(zogrye-

Note that, if & = 0, we have L(log® L) = L(2). Moreover, L(%’é)(ﬁ) = L(%’m)(ﬁ) coincides
with the weak L[~ space on Q. In particular, L(%’OO)(Q) CLP(Q) for any 1 < p < % Therefore,
as a consequence of Proposition we recover the following well known result, whose classical proof
relies on Green’s representation formula.

Proposition A.11. Let Q C RN, N > 2m, be a bounded smooth domain. Then, for any 1 <1< 2m—1
and 1 < p < %, there exists a constant C = C(p,l,Q) such that every weak solution of with
f € LY(Q) satisfies

V2"l Loy < Cllf Il @)-
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