The study of cetaceans is of vital importance to infer biological information useful to drive sustainable action plans aimed at preserving the marine environment and its biodiversity. In a recent study, we developed a novel algorithm for the detection of dorsal fins in the context of a fully automated pipeline for the photo-identification of Risso's dolphins. A lightweight convolutional neural network (CNN) architecture was proposed to recognize fins among cropped images, filtering the inputs for the photo-identification algorithm. In this paper, we compare the performances of that custom CNN to another extremely efficient architecture: Shufflenet. Training an efficient classifier is a key effort to speed up the first part of the photo-identification pipeline, enabling the feasibility of large scale ecological studies. The experiment confirms that both architectures provide a robust feature extraction capability for the problem in hand, even with a significantly smaller number of parameters with respect to other popular state-of-the-art CNNs.

Lightweight and efficient convolutional neural networks for recognition of dolphin dorsal fins

Maglietta R.;Carlucci R.;Dimauro G.;
2020-01-01

Abstract

The study of cetaceans is of vital importance to infer biological information useful to drive sustainable action plans aimed at preserving the marine environment and its biodiversity. In a recent study, we developed a novel algorithm for the detection of dorsal fins in the context of a fully automated pipeline for the photo-identification of Risso's dolphins. A lightweight convolutional neural network (CNN) architecture was proposed to recognize fins among cropped images, filtering the inputs for the photo-identification algorithm. In this paper, we compare the performances of that custom CNN to another extremely efficient architecture: Shufflenet. Training an efficient classifier is a key effort to speed up the first part of the photo-identification pipeline, enabling the feasibility of large scale ecological studies. The experiment confirms that both architectures provide a robust feature extraction capability for the problem in hand, even with a significantly smaller number of parameters with respect to other popular state-of-the-art CNNs.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/381625
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact