We study existence of solutions for the fractional problem (Pm) (−Δ)su + μu = g(u) in RN, RN u2dx = m, u ∈ Hs r (RN), where N 2, s ∈ (0, 1), m > 0, μ is an unknown Lagrange multiplier and g ∈ C(R,R) satisfies Berestycki–Lions type conditions. Using a Lagrangian formulation of the problem (Pm), we prove the existence of a weak solution with prescribed mass when g has L2 subcritical growth. The approach relies on the construction of a minimax structure, by means of a Pohozaev’s mountain in a product space and some deformation arguments under a new version of the Palais–Smale condition introduced in Hirata and Tanaka (2019 Adv. Nonlinear Stud. 19 263–90); Ikoma and Tanaka (2019 Adv. Differ. Equ. 24 609–46). A multiplicity result of infinitely many normalized solutions is also obtained if g is odd.

Normalized solutions for fractional nonlinear scalar field equations via Lagrangian formulation

CINGOLANI S
;
GALLO M;
2021-01-01

Abstract

We study existence of solutions for the fractional problem (Pm) (−Δ)su + μu = g(u) in RN, RN u2dx = m, u ∈ Hs r (RN), where N 2, s ∈ (0, 1), m > 0, μ is an unknown Lagrange multiplier and g ∈ C(R,R) satisfies Berestycki–Lions type conditions. Using a Lagrangian formulation of the problem (Pm), we prove the existence of a weak solution with prescribed mass when g has L2 subcritical growth. The approach relies on the construction of a minimax structure, by means of a Pohozaev’s mountain in a product space and some deformation arguments under a new version of the Palais–Smale condition introduced in Hirata and Tanaka (2019 Adv. Nonlinear Stud. 19 263–90); Ikoma and Tanaka (2019 Adv. Differ. Equ. 24 609–46). A multiplicity result of infinitely many normalized solutions is also obtained if g is odd.
File in questo prodotto:
File Dimensione Formato  
nonac0166CorrectedPDF.pdf

non disponibili

Descrizione: articolo peer reviewed
Tipologia: Documento in Versione Editoriale
Licenza: Copyright dell'editore
Dimensione 965.88 kB
Formato Adobe PDF
965.88 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
2103.10747v2.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 436.99 kB
Formato Adobe PDF
436.99 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/379477
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 24
social impact