De Finetti Theorem describes the structure of the symmetric states (i.e. exchangeable probability measures) in classical probability. Here we mainly report two extension of De Finetti Theorem in the case of the CAR algebra. Namely we firstly realize that the compact convex set of such states is a Choquet simplex, whose extremals are precisely the product states in the sense of Araki–Moriya. Then we present a so–called extended version of this result, showing that these states are conditionally independent w.r.t. the tail algebra.

Symmetric states on the CAR algebra

CRISMALE, VITONOFRIO;
2014-01-01

Abstract

De Finetti Theorem describes the structure of the symmetric states (i.e. exchangeable probability measures) in classical probability. Here we mainly report two extension of De Finetti Theorem in the case of the CAR algebra. Namely we firstly realize that the compact convex set of such states is a Choquet simplex, whose extremals are precisely the product states in the sense of Araki–Moriya. Then we present a so–called extended version of this result, showing that these states are conditionally independent w.r.t. the tail algebra.
2014
978-606-8443-04-1
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/37936
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact