In recent years, there has been a significant increase in interest in lexical semantic change detection. Many are the existing approaches, data used, and evaluation strategies to detect semantic drift. Most of those approaches rely on diachronic word embeddings. Some of them are created as post-processing of static word embeddings, while others produce dynamic word embeddings where vectors share the same geometric space for all time slices. The large majority of the methods use English as the target language for the diachronic analysis, while other languages remain under-explored. In this work, we compare state-of-the-art approaches in computational historical linguistics to evaluate the pros and cons of each model, and we present the results of an in-depth analysis conducted using an Italian diachronic corpus. Specifically, several approaches based on both static embeddings and dynamic ones are implemented and evaluated by using the Kronos-It dataset. We train all word embeddings on the Italian Google n-gram corpus. The main result of the evaluation is that all approaches fail to significantly reduce the number of false-positive change points, which confirms that lexical semantic change is still a challenging task.

A comparative study of approaches for the diachronic analysis of the Italian language

Cassotti P.;Basile P.;De Gemmis M.;Semeraro G.
2020-01-01

Abstract

In recent years, there has been a significant increase in interest in lexical semantic change detection. Many are the existing approaches, data used, and evaluation strategies to detect semantic drift. Most of those approaches rely on diachronic word embeddings. Some of them are created as post-processing of static word embeddings, while others produce dynamic word embeddings where vectors share the same geometric space for all time slices. The large majority of the methods use English as the target language for the diachronic analysis, while other languages remain under-explored. In this work, we compare state-of-the-art approaches in computational historical linguistics to evaluate the pros and cons of each model, and we present the results of an in-depth analysis conducted using an Italian diachronic corpus. Specifically, several approaches based on both static embeddings and dynamic ones are implemented and evaluated by using the Kronos-It dataset. We train all word embeddings on the Italian Google n-gram corpus. The main result of the evaluation is that all approaches fail to significantly reduce the number of false-positive change points, which confirms that lexical semantic change is still a challenging task.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/379149
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact