Hypothesis: Soluplus® is one of the most widely used amphiphilic copolymers in drug delivery and has been reported to strongly enhance the adsorption of model drugs. However, there is still a limited understanding of its micellar behavior as it responds to the different routes of administration, which involve important changes in concentration. Experiments: The microstructure of Soluplus aqueous solutions has been investigated at a wide range of polymer concentrations (2 × 10−6 – 0.2 g/mL) by a combination of diffusion NMR (dNMR), small angle X-ray scattering (SAXS), static (SLS) dynamic (DLS) light scattering and viscosity measurements. These techniques have been coupled with surface tension measurements to frame the polymer's critical micellar concentration (cmc). Findings: We demonstrate the presence at all tested concentrations of two forms of Soluplus, with hydrodynamic radii of 3 and 26 nm, where the fraction of smaller objects accounts for as much as 60–70%. dNMR, SAXS, DLS and SLS indicate that Soluplus spontaneously self-assembles into large spherical particles with a core-shell structure. However, self-assembly takes place three orders of magnitude above the cmc evaluated via surface tension measurements. Instead of the traditional cooperative micellization process, we propose a thermal-activated isodesmic self-assembly of the small aggregates into core-shell micelles.
Understanding the self-assembly of the polymeric drug solubilizer Soluplus®
Mateos H.;Gentile L.;Colafemmina G.;Palazzo G.
2022-01-01
Abstract
Hypothesis: Soluplus® is one of the most widely used amphiphilic copolymers in drug delivery and has been reported to strongly enhance the adsorption of model drugs. However, there is still a limited understanding of its micellar behavior as it responds to the different routes of administration, which involve important changes in concentration. Experiments: The microstructure of Soluplus aqueous solutions has been investigated at a wide range of polymer concentrations (2 × 10−6 – 0.2 g/mL) by a combination of diffusion NMR (dNMR), small angle X-ray scattering (SAXS), static (SLS) dynamic (DLS) light scattering and viscosity measurements. These techniques have been coupled with surface tension measurements to frame the polymer's critical micellar concentration (cmc). Findings: We demonstrate the presence at all tested concentrations of two forms of Soluplus, with hydrodynamic radii of 3 and 26 nm, where the fraction of smaller objects accounts for as much as 60–70%. dNMR, SAXS, DLS and SLS indicate that Soluplus spontaneously self-assembles into large spherical particles with a core-shell structure. However, self-assembly takes place three orders of magnitude above the cmc evaluated via surface tension measurements. Instead of the traditional cooperative micellization process, we propose a thermal-activated isodesmic self-assembly of the small aggregates into core-shell micelles.File | Dimensione | Formato | |
---|---|---|---|
JCIS-21-5750_R2.pdf
Open Access dal 02/05/2024
Descrizione: Articolo principale in post-print
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
1.68 MB
Formato
Adobe PDF
|
1.68 MB | Adobe PDF | Visualizza/Apri |
1-s2.0-S0021979721021445-main.pdf
non disponibili
Descrizione: Articolo in versione editoriale
Tipologia:
Documento in Versione Editoriale
Licenza:
Copyright dell'editore
Dimensione
1.84 MB
Formato
Adobe PDF
|
1.84 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.