Peridynamics is a nonlocal theory for dynamic fracture analysis consisting in a second order in time partial integro-differential equation. In this paper, we consider a nonlinear model of peridynamics in a two-dimensional spatial domain. We implement a spectral method for the space discretization based on the Fourier expansion of the solution while we consider the Newmark-β method for the time marching. This computational approach takes advantages from the convolutional form of the peridynamic operator and from the use of the discrete Fourier transform. We show a convergence result for the fully discrete approximation and study the stability of the method applied to the linear peridynamic model. Finally, we perform several numerical tests and comparisons to validate our results and provide simulations implementing a volume penalization technique to avoid the limitation of periodic boundary conditions due to the spectral approach.

A space-time discretization of a nonlinear peridynamic model on a 2D lamina

Lopez L.
Conceptualization
;
2022-01-01

Abstract

Peridynamics is a nonlocal theory for dynamic fracture analysis consisting in a second order in time partial integro-differential equation. In this paper, we consider a nonlinear model of peridynamics in a two-dimensional spatial domain. We implement a spectral method for the space discretization based on the Fourier expansion of the solution while we consider the Newmark-β method for the time marching. This computational approach takes advantages from the convolutional form of the peridynamic operator and from the use of the discrete Fourier transform. We show a convergence result for the fully discrete approximation and study the stability of the method applied to the linear peridynamic model. Finally, we perform several numerical tests and comparisons to validate our results and provide simulations implementing a volume penalization technique to avoid the limitation of periodic boundary conditions due to the spectral approach.
File in questo prodotto:
File Dimensione Formato  
CAMWA_2022.pdf

non disponibili

Tipologia: Documento in Versione Editoriale
Licenza: Copyright dell'editore
Dimensione 1.63 MB
Formato Adobe PDF
1.63 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
2102.06485v1.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 5.41 MB
Formato Adobe PDF
5.41 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/378274
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 21
social impact