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Abstract. Peridynamics is a nonlocal theory for dynamic fracture analysis consisting in a
second order in time partial integro-differential equation. In this paper, we consider a non-
linear model of peridynamics in a two-dimensional spatial domain. We implement a spectral
method for the space discretization based on the Fourier expansion of the solution while we
consider the Newmark-β method for the time marching. This computational approach takes
advantages from the convolutional form of the peridynamic operator and from the use of the
discrete Fourier transform. We show a convergence result for the fully discrete approxima-
tion and study the stability of the method applied to the linear peridynamic model. Finally,
we perform several numerical tests and comparisons to validate our results and provide sim-
ulations implementing a volume penalization technique to avoid the limitation of periodic
boundary conditions due to the spectral approach.

Keywords. nonlinear peridynamics, spectral methods, Newmark-β method, nonlo-
cal models.

1. Introduction

Complex fracture problems require accurate prediction of damage behavior or spon-
taneous cracks formation in anisotropic materials. Classical theory of continuum me-
chanics is unsuitable for modeling discontinuous phenomena, such as cracks and defects,
because it requires the partial derivatives of the displacement field to be known all over
the domain, but they do not exist on discontinuities. Non-local theories allow a unique
equation to be used both on or off a crack, see [19, 11, 10, 3, 36, 12], and recent stud-
ies show that differential operators of fractional orders may depict the nature of such
phenomena (see for instance [8, 20, 22, 21, 14]).

Peridynamics is a non-local version of the elasticity theory introduced by Silling
in [41] to solve discontinuous problems without using partial derivatives. In the bond-
based formulation, the motion of a material body is governed by an integro-differential
partial equation, where each infinitesimal unit of continuum interacts with other units
in its neighborhood directly across finite distance. The use of integral-differential equa-
tions instead of the spatial differential equations allow the displacement and internal
forces to develop singularities (see [31, 38, 32, 4, 18, 24, 42, 13]).

The theory is non-local because the interactions between material points extend
beyond their neighborhood inside a region with finite radius called horizon (see for
instance [5]). This feature makes it possible to analyze fracture problems involving
viscoelastic and cohesive materials.

We fix [0, T ], for some T > 0, as the time domain under investigation. Consider a
continuum body with mass density ρ : V × [0, T ] → R+ occupying a region V ⊂ R2.
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Figure 1. The peridynamic domain and the horizon.

Then, the peridynamic model describes the dynamics of the body and its equation is
given by

ρ(x)∂2
ttu(x, t) =

∫
V

f(x′ − x, u(x′, t)− u(x, t))dx′ + b(x, t), x ∈ V, t ∈ [0, T ], (1)

with initial conditions

u(x, 0) = u0(x), ∂tu(x, 0) = v0(x), x ∈ V, (2)

where u is the displacement field and b describes all the external forces acting on
the material body. The interaction between two material points is described by a
response function f , called pairwise force function, that contains the constitutive
law associated with the material. This means that the integrand f denotes the force
density that the particle x′ exerts on the particle x, see for instance [41]. The interaction
between x with all particle in its peridynamic neighborhood is called bond, see Figure 1.
We set

ξ = x′ − x, η = u(x′, t)− u(x, t),

which denote the relative position of two particles in the reference configuration and the
relative displacement, respectively. Thus ξ + η represents the current relative position
vector, and we notice that the pairwise force function f satisfies Newton’s third law
and the conservation of the angular momentum:

f(−ξ,−η) = −f(ξ, η), η × f(ξ, η) = 0. (3)

Since peridynamics prescribes finite-range interactions, we assume the existence of
a positive cutoff constant δ, such that there are no interactions among material points
having relative distance greater than δ (see [42]). Indeed, the state of a material point
is influenced by all points in a region of finite radius called horizon namely

f(ξ, η) = 0, for |ξ| > δ and for every η.
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The value of δ is a parameter that represents the locality of the interactions. The
interactions become more local as δ decreases. Thus, the classical theory can be thought
as the limiting case of peridynamics as δ goes to zero.

Additionally, the non-linear peridynamic operator in (1) can be understood as∫
V

f(x′ − x, u(x′, t)− u(x, t))dx′ =

∫
V ∩Bδ(x)

f(x′ − x, u(x′, t)− u(x, t))dx′,

where Bδ(x) = {x′ ∈ R : |x− x′| ≤ δ}.
In what follows, we restrict our attention to the case of an homogeneous bi-dimensional

lamina, where the evolution of the material body is given by a class of nonlinear peri-
dynamic pairwise force function of convolution type in separable form

f(ξ, η) = C(ξ)w(η), (4)

where the function C is a non-negative even function, i.e. C(−ξ) = C(ξ), called
micromodulus function. We assume that C(x, x′) ≡ 0 for |x − x′| > δ. While w
is an odd global Lipschitz continuous function for which there exists a non-negative
function ` ∈ L1(Bδ(0)) ∩ L∞(Bδ(0)) such that for all ξ ∈ R2, with |ξ| ≤ δ and η, η′

there holds

|w(η′)− w(η)| ≤ `(ξ)|η′ − η|.
Thus, the model becomes

ρ(x)∂2
ttu(x, t) =

∫
Bδ(x)

C(x′ − x)w (u(x′, t)− u(x, t)) dx′ + b(x, t), (5)

for x ∈ V, t ∈ [0, T ], with initial conditions

u(x, 0) = u0(x), ∂tu(x, 0) = v0(x), x ∈ V. (6)

In particular, we focus on the case

w(η) = ηr, r odd, r ≥ 1. (7)

We observe that when r = 1, we obtain the linear case studied in [9, 42, 37]. Instead
values of r greater than one are useful both from an analytical and a physical point of
view, as the power-type nonlinearity in the pairwise force function resembles a fractional
derivative (see for instance [8, 33]), and the well-posedness of the model is achieved in
this setting (see [17, 8]). Additionally, it could be easily generalized to the following
more common nonlinearities used in [8]:

f(ξ, η) =
|η|p−2η

|ξ|2+αp
, p ≥ 2, α ∈ (0, 1).

If we define the nonlinear peridynamic operator of (5) as follows

L(u(x, t)) =

∫
V

C(x′ − x) (u(x′, t)− u(x, t))
r
dx′, x ∈ V, t ∈ [0, T ], (8)
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then equations (5) and (6) become{
ρ(x)∂2

ttu(x, t) = L(u(x, t)) + b(x, t), x ∈ V, t ∈ [0, T ],

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ V,
(9)

where v(x, t) = ∂tu(x, t).
In order to solve complex problems using the peridynamic theory, a numerical ap-

proach is necessary. To discretize in space the peridynamic equation, the most im-
plemented methods are the finite element methods and meshfree methods (see for in-
stance [40, 9]). Instead, spectral methods, based on truncated Fouries series in space,
result to be very accurate and suitable in the presence of nonlocalities. These techniques
rewrite the equations in the Fourier space, transforming derivatives and convolution
products into multiplication and reducing the total computational cost of the proce-
dure by using the discrete Fourier transform (DFT) and the Fast Fourier transform
(FFT) algorithm (see for instance [33, 9, 26]).

On the other hand, the time integration of the model can be done by using explicit
forward and backward difference techniques (see [35, 30, 28]). The Störmer-Verlet
method consists in an explicit central second-order finite difference scheme widely used
in elastodynamics and in the context of wave propagation (see for example [43, 33, 9,
25, 39]). It is a robust and symplectic scheme simple to implement which preserves
geometric properties of the flow, such as the energy of the system, but it requires a
restriction on the step size.

The numerical study of non-local models demands for high accurate solutions, and
as explained before, spectral collocation methods can achieve good accuracy. However,
the application of explicit time marching schemes make the implementation of spectral
space discretization very expansive when we need to study the long time behavior.
The implicit time schemes can provide the same accuracy of the explicit ones, but
using greater time steps. The Newmark-β method, for 0 < β ≤ 1/2, is an implicit
second order integrator largely used in continuum mechanics and for structural dynamic
problems. It depends on a parameter β which let the acceleration of the system to
vary in the time interval under consideration. It is unconditionally stable in time for
β ∈ [1/4, 1/2], and has computational advantages compared to the explicit methods,
particularly as problems become stiff (see [44, 29]).

In this paper, we apply spectral methods based on the Fourier expansion for the
spatial discretization of the 2D peridynamic model (9) and perform the time integration
by the Newmark-β method instead of the more standard Störmer-Verlet method.

The paper is organized as follows. In Section 2 we describe the spectral Fourier
collocation method for spatial discretization of the bi-dimensional domain and we ob-
serve that the computational cost can be reduced as the method moves the convolution
product to a multiplication. We also recall a convergence result for the semi-discrete
problem. Section 3 introduce the Newmark-β method for time marching and contain a
proof for the convergence of the fully discrete problem for the case r = 1 and a stability
analysis of the method. Section 4 is devoted to numerical simulations both with and
without the implementation of a volume penalization. A validation is computed by
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comparing the exact and the numeric solution and by analyzing the relative L2-error.
Moreover, we provide comparisons between the performance of the Newmark-β method
and the Störmer-Verlet method used for the time discretization of the model.

2. Spectral semi-discretization of the problem

In the framework of engineering computation, spectral methods represent a good
strategy for the global discretization of partial differential equations as they guarantee
high levels of accuracy even when applied to nonlinear problems or when long time
integration is necessary (see for instance [7]).

To obtain a spectral discretization of the spatial domain one can consider a Fourier
series expansion of the solution u(x, t) and then makes a truncation of the obtained
series expansion. The method requires the assumption of periodic boundary conditions
and is often implemented in peridynamic problems where a convolution product ap-
pears in the nonlinear integral operator L. Indeed spectral methods allow to transform
convolutions to multiplications (see [9, 33, 1, 16, 26, 45, 37, 27]). For problems with non
periodic boundary conditions, one can employ volume penalization techniques as pro-
posed in [33, 26]. While, extensions of this spectral discretization to irregular domain
are possible (see for instance [6, 23]).

The discretization of 1D spatial domain by means of spectral Fourier methods in the
context of peridynamic models have been performed for example in [33, 9].

Instead, in this paper, we consider the spatial domain which is a 2D lamina of R2

given by V = [a, b]× [a, b].
We assume that the mass density is constant in space, and to simplify the notation,

we suppose ρ(x) ≡ 1. Let w(η) = ηr, for r odd and r > 1 and δ > 0 be the horizon.
Using the following definition of the periodic convolution product,

C ∗V u =

∫
V

C(x− x′)u(x′, t) dx′,

we rewrite the model (8)-(9) as

∂2
ttu =(C ∗V ur) +

r−1∑
`=1

(
r

`

)
(−1)`u`

(
C ∗V ur−`

)
− γur + b , (10)

for x ∈ V , t ∈ [0, T ] and where γ =
∫ +∞
−∞

∫ +∞
−∞ C(x) dx. Indeed,

∂2
ttu(x, t) =

∫
V

C(x− x′) (u(x′, t)− u(x, t))
r
dx′ + b(x, t)

=
r∑
`=0

(
r

`

)
(−1)`u`(x, t)

∫
V

C(x− x′)ur−`(x′, t) dx′ + b(x, t)

=(C ∗V ur)(x, t) +
r−1∑
`=1

(
r

`

)
(−1)`u`(x, t)

(
C ∗V ur−`

)
(x, t)

− γur(x, t) + b(x, t).
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Hence, the nonlinear peridynamic operator (8) becomes

L(u) = (C ∗V ur) +
r−1∑
`=1

(
r

`

)
(−1)`u`

(
C ∗V ur−`

)
− γur, (11)

for x ∈ V, 0 ≤ t ≤ T .
Let u(x1, x2, t) be a real-valued function defined over the periodic domain V . Then

we can express u(x1, x2, t) by the infinite Fourier series in space

u(x1, x2, t) =
∞∑

k1=−∞

∞∑
k2=−∞

û(k1, k2, t)e
=(k1x1+k2x2), (12)

where (x1, x2) ∈ V , t ∈ [0, T ], [= denotes the imaginary unit = =
√
−1]. In (12)

û(k1, k2, t) for k = (k1, k2) with k1, k2 ∈ Z and t ∈ [0, T ] represents the 2D Fourier
coefficients of u:

û(k1, k2, t) =

∫ b

a

∫ b

a

u(x1, x2, t)e
−=(k1x1+k2x2)dx1dx2. (13)

The form (12) is the 2D inverse Fourier transform F−1, while equation (13) represents
the Fourier transform F of u.

Thanks to the Convolution Theorem, we can compute the periodic convolution in (10)
by means of the inverse Fourier transform F−1 of the product of Fourier coefficients:

C ∗V ur = F−1 (F(C)F (ur)) . (14)

Additionally, according to the Inverse Theorem, we obtain

u`
(
C ∗V ur−`

)
= F−1

(
F
(
u`
)
∗V
(
F(C)F

(
ur−`

)))
. (15)

Thus, using (14) and (15), the equation (10) becomes

∂2
ttu =F−1 (F(C)F (ur)) +

r−1∑
`=1

(
r

`

)
(−1)`F−1

(
F
(
u`
)
∗V
(
F(C)F

(
ur−`

)))
(16)

− γur + b.

As a consequence, the integral peridynamic operator L in (11) can be rewritten as
follows:

L(u) =F−1 (F(C)F (ur)) +
r−1∑
`=1

(
r

`

)
(−1)`F−1

(
F
(
u`
)
∗V
(
F(C)F

(
ur−`

)))
(17)

− γur.
In order to construct the spectral method for (16), we have to approximate u at the

collocation points by its truncated Fourier series. Let ∆x > 0 be the space step in
both directions. We discretize the spatial domain V = [a, b]× [a, b] by the equidistant
collocation points xn = (xn1 , xn2) ∈ V , with n = (n1, n2), such that

xn1 = a+ n1∆x, xn2 = a+ n2∆x, for n1, n2 ∈ {0, . . . , N},
where N =

⌊
b−a
∆x

⌋
, see Figure 2.
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Figure 2. The spatial discretization of the peridynamic domain.

Then we can approximate u by the truncated Fourier series uN

uN(x1, x2, t) =
N∑

k1=−N

N∑
k2=−N

ũ(k1, k2, t)e
=(k1x1+k2x2), (18)

for t ∈ [0, T ]. In (18) ũ(k1, k2, t) for k = (k1, k2) with k1, k2 ∈ {−N, . . . , N} and
t ∈ [0, T ] represents the 2D discrete Fourier transform (DFT)

ũ(k1, k2, t) =
1

(N + 1)2ck1ck2

N∑
n1=0

N∑
n2=0

uN(xn1 , xn2 , t)e
−=(k1xn1+k2xn2 ), (19)

where

cki =

{
2, if ki = ±N,
1, otherwise,

i = 1, 2.

The form (18) evaluated in (xn1 , xn2) is the 2D inverse discrete Fourier transform
(IDFT).

We notice that the truncated Fourier series uN(x1, x2, t) converges to u(x1, x2, t) as N
goes to infinity. Moreover, we have that uN(x1, x2, t) represents a discrete interpolant
of u, in fact

uN(xn, t) = u(xn, t),

for n = (n1, n2), with n1, n2 ∈ {0, · · · , N}, and t ∈ [0, T ] (see [7]).
Often, for the sake of simplicity, we will use the following notation: uN(x, t) instead of

uN(x1, x2, t) with x = (x1, x2) ∈ V and ũk(t) instead of ũ(k1, k2, t) for every k = (k1, k2)
with k1, k2 ∈ {−N, . . . , N}. Moreover, to lighten the notation, we denote the 2D
discrete Fourier transform by FN and the 2D inverse discrete Fourier transform by
F−1
N .
By using the Fourier collocation method and the definition of the truncated Fourier

series, if we replace u(x, t) in (16) with uN(x, t) in (18) and evaluate uN(x, t) at xn, we
obtain the discrete form of the peridynamic operator L in (17):
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LN(uNn ) =
(
F−1
N

(
FN(C)FN

((
uNn
)r)

(∆x)2)) (20)

+

(
r−1∑
`=1

(
r

`

)
(−1)`F−1

N

(
FN
((
uNn
)`) ∗V (FN(C)FN

((
uNn
)r−`)

(∆x)2
)))

− γ(uNn )r ,

where uNn (·) approximates uN(xn, ·).
Thus, the spectral semi-discrete method for (9) becomes{

d2

dt2
uNn = LN(uNn ) + bn, t ∈ [0, T ]

uNn (0) = u0(xn), vNn (0) = v0(xn),
(21)

where

u0(xn) =
N∑

k1=−N

N∑
k2=−N

ũ0,ke
=(k1xn1+k2xn2), v0(xn) =

N∑
k1=−N

N∑
k2=−N

ṽ0,ke
=(k1xn1+k2xn2),

for each n = (n1, n2) with n1, n2 ∈ {0, . . . , N}.
The proposed spectral semi-discretization method (21) can benefit of the Fast Fourier

transform (FFT) in order to reduce efficiently its computational cost. Indeed, if we
numerically compute the discrete Fourier transform FN , which appears in (20) by
means of the FFT function, we find that the complexity of the method is O(N2 log2

2(N))
compared withO(N4) for the conventional quadrature formula or peridynamic meshfree
and finite element solvers of the 2D problems.

We recall that, due to the interpolant nature of uN , the spectral method (21) is
locally constructed in such a way, on each collocation point, we have

uNn (t) ≈ u(xn, t), n = (n1, n2), n1, n2 ∈ {0, · · · , N},

where u(·, t) is the solution of the problem (9) at time t ∈ [0, T ].
For the time discretization of this system of ODEs we will consider the Newmark-β

method and the approximation of uNn (t) at a point ts of the mesh on [0, T ] will be
denoted by uNn,s.

2.1. Convergence of the semi-discrete approximation. In this section we present
a convergence result for the spectral semi-discrete problem essentially similar to the
one given for the one-dimensional case in [33]. In what follows, M denotes a generic
positive constant. We denote by (·, ·) and ‖·‖ the inner product and the norm of L2(V ),
respectively, namely, if u, v ∈ L2(V ), then

(u, v) =

∫
V

u(x)v(x) dx, ‖u‖2 = (u, u).

Let SN be the space of trigonometric polynomials of degree N ,

SN = span
{
e=(k1x1+k2x2)| −N ≤ k1, k2 ≤ N, x1, x2 ∈ [a, b]

}
,
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and PN : L2(V )→ SN be an orthogonal projection operator

PNu(x) =
N∑

k1=−N

N∑
k2=−N

ũke
=(k1x1+k2x2),

such that for any u ∈ L2(V ), the following equality holds

(u− PNu, ϕ) = 0, for every ϕ ∈ SN . (22)

The operator PN commutes with derivatives in the distributional sense:

∂qxPNu = PN∂
q
xu.

Moreover, for the duality relation between the operators, PN satisfies

PNL = LN , and PNLN = L. (23)

We denote by Hs
p(V ) the periodic Sobolev space and by Xs = C1

(
Hs
p(V ); [0, T ]

)
the

space of all continuous functions in Hs
p(V ) whose distributional derivative is also in

Hs
p(V ), with norm

‖u‖2
Xs

= max
t∈[0,T ]

(
‖u(·, t)‖2 + ‖∂tu(·, t)‖2) , u ∈ Xs .

The spectral scheme for (9) with periodic boundary conditions is

∂2
ttu

N = PNL(uN) + b, (24)

uN(x, 0) = PNu0(x), vN(x, 0) = PNv0(x), (25)

where uN(·, t) ∈ SN for every 0 ≤ t ≤ T .
The following lemmas are preliminary to the convergence result of the semi-discrete

scheme.

Lemma 1 (see [7]). For every real 0 ≤ µ ≤ s, there exists a positive constant L such
that

‖u− PNu‖Hµ
p (V ) ≤ LNµ−s ‖u‖Hs

p(V ) , for every u ∈ Hs
p(V ). (26)

Lemma 2 (see [15]). The spectrum of the discrete peridynamic operator −LN satisfies
the following condition

sp(−LN) ⊆ [λ∗, λ
∗ (∆x)2],

where λ∗ and λ∗ are positive constants.

Theorem 1. Let u ∈ Xs, s ≥ 1, be the solution of the problem (9) with periodic
boundary conditions and initial conditions u0, v0 ∈ Hs

p(V ). Let uN be the solution of
the semi-discrete scheme (24)-(25). Assume that C ∈ L∞(V ), then, for every T > 0,
there exists a constant M = M(T ), independent on N , such that∥∥u− uN∥∥

X1
≤M(T ) (∆x)s−1 ‖u‖Xs . (27)

For the proof of Theorem 1, we can easily extend to the bi-dimensional case the
convergence result of [33].
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3. The fully discrete problem

Here we derive the fully discretization of the peridynamic equation (9) by using
the Newmark-β method, which is an implicit integrator of the second order in time,
largely used in various fields of engineering, in particular in dynamic response systems,
elastodynamics and in the context of partial differential equation of wave propaga-
tion (see [44, 29]). It is implicit for 0 < β ≤ 1/2, but it offers the advantage to be
unconditionally stable in time when β ∈ [1/4, 1/2].

Let ∆t > 0 be the time step and we partition the time interval [0, T ] by means of
the discrete sequence ts = s∆t, for s = 0, . . . , ST , where ST =

⌊
T
∆t

⌋
. We denote by

(uNs (·), vNs (·)) the numerical approximation of (uN(·, ts), vN(·, ts)) so that (uNs (xn), vNs (xn)) =
(uNn,s, v

N
n,s).

For the sake of simplicity, we assume b ≡ 0 and ρ ≡ 1. We apply the Newmark-β
method to the semi-discrete problem (21) by using an extended version of the Cauchy’s
mean value theorem. The displacement first derivative can be approximated as follows:

vNs+1 = vNs +
∆t

2

(
LN(uNs ) + LN(uNs+1)

)
, (28)

while we obtain the following expression for the displacement

uNs+1 = uNs + ∆tvNs +
(∆t)2

2
uNtt,β, (29)

where

uNtt,β = (1− 2β)uNtt,s+1 + 2βuNtt,s, 0 ≤ 2β ≤ 1, (30)

and uNtt,s denotes the second derivative in time of uN evaluated in ts.
The introduction of the parameter β allows the acceleration to vary as β varies,

and as we will see later, there exists an interval of values for β that guarantees the
convergence of the fully-discrete problem.

Substituting (30) into (21) and collecting equations (29) and (28), we get the final
expression of the method:


uNs+1 = uNs + ∆tvNs + (∆t)2

((
1
2
− β

)
LN(uNs ) + βLN(uNs+1)

)
,

vNs+1 = vNs + ∆t
2

(
LN(uNs ) + LN(uNs+1)

)
,

uN0 = un,0, vN0 = vn,0.

(31)
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Additionally, we can express system (31) in the following way, by eliminating vNs and
vNs+1:

uNs+1 − 2uNs + uNs−1

(∆t)2
=

1

∆t

(
uNs+1 − uNs

∆t
−
uNs − uNs−1

∆t

)
(32)

=
1

∆t

(
vNs − vNs−1

)
+

(
1

2
− β

)
LN(uNs ) + βLN(uNs+1)

−
(

1

2
− β

)
LN(uNs−1)− βLN(uNs )

= βLN(uNs+1) + (1− 2β)LN(uNs ) + βLN(uNs−1).

We observe that, when β = 0, this method coincides with the Störmer-Verlet method,
which is explicit.

To find the displacement at each time step, we solve the non-linear system

F (uNs+1) = uNs+1 − uNs −∆tvNs − (1− 2β)
(∆t)2

2
LN(uNs )− β(∆t)2LN(uNs+1) = 0,

by using, for example, the Newton iterative method.

3.1. Convergence of the fully discrete approximation. In this section, we inves-
tigate the convergence of the sequence {uNs }

ST
s=0 to the exact solution of the problem (9).

For the sake of simplicity, we limit our attention to the linear problem, namely, we con-
sider the case w(η) = η. Throughout this section the notation u(t), for each t, denotes
a function depending on the space variable, namely u(t)(·) = u(·, t) with u(·, t) in a
suitable space, analogously, uNs for each s denotes a function depending on the space
variable. The following Lemmas are preliminary to the convergence result.

Lemma 3. Let u be the solution of the problem (9) with initial condition u0, v0 ∈
H2
p (V ). Suppose u ∈ C3

(
H2
p (V ), [0, T ]

)
and let {uNs }

ST
s=0 be the sequence generated by

the method (31), then∥∥uN1 − PNu(∆t)
∥∥
H2
p(V )
≤M (∆x)2

(
‖u0‖H2

p(V ) + ‖v0‖H2
p(V )

)
. (33)

Proof. Thanks to the regularity assumptions on u with respect to the time variable, we
can apply the Cauchy’s mean value theorem to u(t). For all x ∈ V , we have

u(∆t) = u0 + ∆tv0 +
(∆t)2

2
((1− 2β)utt(0) + 2βutt(∆t)) +R (34)

= u0 + ∆tv0 +
(∆t)2

2
((1− 2β)L (u0) + 2βL(u(∆t))) +R,

where R = O((∆t)3). By (31) for s = 0, we find

uN1 = uN0 + ∆tvN0 +
(∆t)2

2

(
(1− 2β)LN(uN0 ) + 2βLN(uN1 )

)
. (35)
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We define σs = uNs − PNu(ts). Then, the duality relation (23), (34) and (35) imply

σ0 + σ1 = σ0 + uN1 − PNu(∆t) (36)

= 2σ0 + (∆t)
(
vN0 − PNv0

)
−R.

We make the inner product of (36) with the term σ0 + σ1. Thus, using the Cauchy’s
inequality and Lemma 1, we find

‖σ0 + σ1‖2
H2
p(V ) = (σ0 + σ1, σ0 + σ1) (37)

=
(
2σ0 + (∆t)

(
vN0 − PNv0

)
−R, σ0 + σ1

)
≤M ‖σ0 + σ1‖H2

p(V )

(
‖σ0‖H2

p(V ) + (∆t)
∥∥vN0 − PNv0

∥∥
H2
p(V )

+ (∆t)3
)
.

≤M (∆x)2 ‖σ0 + σ1‖H2
p(V )

(
‖u0‖H2

p(V ) + ‖v0‖H2
p(V )

)
,

for some M > 0.
Therefore, we conclude

‖σ1‖H2
p(V ) =

∥∥uN1 − PNu(∆t)
∥∥
H2
p(V )
≤ ‖σ0‖H2

p(V ) + ‖σ1‖H2
p(V ) (38)

≤M(∆x)2
(
‖u0‖H2

p(V ) + ‖v0‖H2
p(V )

)
.

�

Lemma 4. Let u be the solution of the problem (9) with initial condition u0, v0 ∈
H2
p (V ). Suppose u ∈ C3

(
H2
p (V ), [0, T ]

)
and let {uNs }

ST
s=0 be the sequence generated by

the method (31). If 1/4 ≤ β ≤ 1/2, then

∥∥uNs − PNu(ts)
∥∥
H2
p(V )
≤M

(
(∆x)2 + (∆t)2) , (39)

for s = 0, · · · , ST and M is a positive constant independent on ∆x and ∆t.

Proof. We observe that the following relations hold

u(ts+1)− 2u(ts) + u(ts−1)

(∆t)2
= utt(ts) + R̃,

u(ts+1) + 2u(ts) + u(ts−1) = 4u(ts) + R̃,

where R̃ = O((∆t)2) is the rest of the Taylor expansion.
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The previous relations, the duality equation (23), the trinomial recurrence formula-
tion of the method (32) and the definition of the problem(9) imply

σs+1 − 2σs + σs−1

(∆t)2
−βLN(σs+1)− (1− 2β)LN(σs)− βLN(σs−1) (40)

=
uNs+1 − 2uNs + uNs−1

(∆t)2
− PN

(
u(ts+1)− 2u(ts) + u(ts−1)

(∆t)2

)
− βLN(uNs+1)− (1− 2β)LN(uNs )− βLN(uNs−1)

+ βLN(PNu
N
s+1) + (1− 2β)LN(PNu

N
s ) + βLN(PNu

N
s−1)

=− PNutt(ts) + βL(u(ts+1)) + (1− 2β)L(u(ts)) + βL(u(ts−1))

=− PNutt(ts) + βutt(ts+1) + 2βutt(ts) + βutt(ts−1)

+ utt(ts)− 4βutt(ts)

=− PNutt(ts) + utt(ts) + R̃.

Let us define ϕs+ 1
2

= σs+1−σs
∆t

, so,

σs+1 − 2σs + σs−1

(∆t)2
=

ϕs+ 1
2
− ϕs− 1

2

∆t
, ϕs+ 1

2
+ ϕs− 1

2
= 2

σs+ 1
2
− σs− 1

2

∆t
. (41)

Now, we consider the inner product of (40) with (ϕs+ 1
2

+ ϕs− 1
2
). Using the rela-

tions (41), for the first term on the left-side of (40) we find

(
ϕs+ 1

2
− ϕs− 1

2

∆t
, ϕs+ 1

2
+ ϕs− 1

2

)
=

1

∆t

(∥∥∥ϕs+ 1
2

∥∥∥2

H2
p(V )
−
∥∥∥ϕs− 1

2

∥∥∥2

H2
p(V )

)
. (42)

For the second term on the left-side of (40), using the spectral properties of the discrete
peridynamic operator LN , we get

−2
(
βLN(σs+1) + (1− 2β)LN(σs) + βLN(σs−1), ϕs+ 1

2
+ ϕs− 1

2

)
(43)

= −4β

∆t

(
LN(σs+ 1

2
), σs+ 1

2

)
+

4β

∆t

(
LN(σs− 1

2
), σs− 1

2

)
.
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Let us focus on the right-side of (40). Lemma 1 and the Cauchy-Schwartz inequality
ensure(

(utt(ts)− PNutt(ts)), ϕs+ 1
2

+ ϕs− 1
2

)
+
(
R̃, ϕs+ 1

2
+ ϕs− 1

2

)
≤M ‖utt(ts)− PNutt(ts)‖H2

p(V )

∥∥∥ϕs+ 1
2

+ ϕs− 1
2

∥∥∥
H2
p(V )

(44)

+M(∆t)2
∥∥∥ϕs+ 1

2
+ ϕs− 1

2

∥∥∥
H2
p(V )

≤M
(
‖utt(ts)− PNutt(ts)‖2

H2
p(V ) + (∆t)4

)
+M

(∥∥∥ϕs+ 1
2

∥∥∥2

H2
p(V )

+
∥∥∥ϕs− 1

2

∥∥∥2

H2
p(V )

)
≤M

(
(∆x)2 + (∆t)4 +

∥∥∥ϕs+ 1
2

∥∥∥2

H2
p(V )

+
∥∥∥ϕs− 1

2

∥∥∥2

H2
p(V )

)
.

Merging (42), (43) and (44) into (40), we have

1

∆t

(∥∥∥ϕs+ 1
2

∥∥∥2

H2
p(V )
−
∥∥∥ϕs− 1

2

∥∥∥2

H2
p(V )
− 4β

(
LN(σs+ 1

2
), σs+ 1

2

)
+ 4β

(
LN(σs− 1

2
), σs− 1

2

))
(45)

≤M

(
(∆x)2 + (∆t)4 +

∥∥∥ϕs+ 1
2

∥∥∥2

H2
p(V )

+
∥∥∥ϕs− 1

2

∥∥∥2

H2
p(V )

)
.

Adding to the both side of inequality (45), the term

1

∆t

(
‖σs+1‖2

H2
p(V ) − ‖σs−1‖2

H2
p(V )

)
=
(
σs+1 + σs−1, ϕs+ 1

2
+ ϕs− 1

2

)
≤M

(
‖σs+1‖2

H2
p(V ) + 2 ‖σs‖2

H2
p(V ) + ‖σs−1‖2

H2
p(V ) +

∥∥∥ϕs+ 1
2

∥∥∥2

H2
p(V )

+
∥∥∥ϕs− 1

2

∥∥∥2

H2
p(V )

)
,

we obtain

1

∆t

(∥∥∥ϕs+ 1
2

∥∥∥2

H2
p(V )
−
∥∥∥ϕs− 1

2

∥∥∥2

H2
p(V )
− 4β

(
LN(σs+ 1

2
), σs+ 1

2

)
+ 4β

(
LN(σs− 1

2
), σs− 1

2

))
(46)

+
1

∆t

(
‖σs+1‖2

H2
p(V ) − ‖σs−1‖2

H2
p(V )

)
≤M

(
‖σs+1‖2

H2
p(V ) + 2 ‖σs‖2

H2
p(V ) + ‖σs−1‖2

H2
p(V ) +

∥∥∥ϕs+ 1
2

∥∥∥2

H2
p(V )

+
∥∥∥ϕs− 1

2

∥∥∥2

H2
p(V )

)
+M

(
(∆x)2 + (∆t)2

)2
.

We set

Γs =
∥∥∥ϕs+ 1

2

∥∥∥2

H2
p(V )

+ ‖σs+1‖2
H2
p(V ) + ‖σs‖2

H2
p(V ) − 4β

(
LN(σs+ 1

2
), σs+ 1

2

)
, (47)
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then, we can compact (46) in the following way

Γs − Γs−1

∆t
≤M

(
(∆x)2 + (∆t)2

)2
+M (Γs + Γs−1) .

The Gronwall inequality implies

Γs ≤

(
Γ0 +

s∑
k=1

∆t
(
(∆x)2 + (∆t)2

)2

)
eMts∆t. (48)

Additionally, the same argument as in (37) and (??) allows us to obtain

Γ0 ≤M
(
(∆x)2 + (∆t)2

)2
. (49)

Hence, since ts ≤ T , using the definition of Γs in (47) and collecting (48) and (49), we
find

‖σs‖2
H2
p(V ) ≤ Γs ≤M

(
(∆x)2 + (∆t)2

)2
. (50)

Therefore, the estimate (50) ensures that∥∥uNs − PNu(ts)
∥∥
H2
p(V )
≤M((∆x)2 + (∆t)2). (51)

�

The following convergence result holds.

Theorem 2. Let u be the solution of the problem (9) with initial condition u0, v0 ∈
H2
p (V ). Suppose u ∈ C3

(
H2
p (V ), [0, T ]

)
and let {uNs }

ST
s=0 be the sequence generated by

the method (31). If 1/4 ≤ β ≤ 1/2, then∥∥u(ts)− uNs
∥∥
H2
p(V )
≤M (∆x)2

(
‖u0‖H2

p(V ) + ‖ut‖L1(H2
p(V ),0,ts)

+ ‖v0‖H2
p(V )

)
+M (∆t)2 ,

(52)
where s = 0, · · · , ST and M > 0 is a constant depending on the regularity of u and
independent on ∆x and ∆t.

Proof. Using the triangular inequality, we have∥∥u(ts)− uNs
∥∥
H2
p(V )
≤ ‖u(ts)− PNu(ts)‖H2

p(V ) +
∥∥uNs − PNu(ts)

∥∥
H2
p(V )

. (53)

Lemma 1 implies

‖u(ts)− PNu(ts)‖H2
p(V ) ≤M (∆x)2 ‖u(ts)‖H2

p(V ) (54)

= M (∆x)2

(
‖u0‖H2

p(V ) +

∫ ts

0

‖ut(r)‖H2
p(V ) dr

)
≤M (∆x)2

(
‖u0‖H2

p(V ) + ‖ut‖L1(H2
p(V ),0,ts)

)
.

Now, we focus on the difference σs = (uNs − PNu(ts)). We start by considering the
case s = 0: Lemma 1 implies again∥∥uN0 − PNu(t0)

∥∥
H2
p(V )

= ‖un,0 − PNu0‖H2
p(V ) ≤M (∆x)2 ‖u0‖H2

p(V ) . (55)
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If s = 1 and t1 = ∆t, thanks to Lemma 3 we have

‖σ1‖H2
p(V ) ≤M(∆x)2

(
‖u0‖H2

p(V ) + ‖v0‖H2
p(V )

)
. (56)

We turn on the general case s ≥ 1. Lemma 4 ensures that∥∥uNs − PNu(ts)
∥∥
H2
p(V )

= ‖σs‖H2
p(V ) ≤M((∆x)2 + (∆t)2). (57)

Therefore, using (54) and (57) into (53), we complete the proof. �

3.2. Stability of the Newmark-β method. In this section, we prove the stability
of the method by the energy method, showing that the norm of the numerical solution
admits a sublinear behavior with respect to the time variable.

Theorem 3. Let {uNs }
ST
s=0 be the sequence generated by the method (31). If 1/4 ≤ β ≤

1/2, then there exist two positive constants M0 and M1 such that∥∥uNs ∥∥H2
p(V )
≤M1 +M0ts, s = 0, · · · , ST . (58)

Proof. Let us define the test function ψN
s+ 1

2

=
uNs+1−uNs

∆t
, and

uNs+1/2 =
uNs+1 + uNs

2
, for s = 0, . . . , ST − 1.

so
ψN
s+ 1

2

− ψN
s− 1

2

∆t
=
uNs+1 − 2uNs + uNs−1

(∆t)2
, ψN

s+ 1
2

+ ψN
s− 1

2
=
uNs+1 − uNs−1

∆t
. (59)

If we take the inner product between the equation (32) and
(
ψN
s+ 1

2

+ ψN
s− 1

2

)
, we obtain

the following energy equation(
ψN
s+ 1

2

− ψN
s− 1

2

∆t
, ψN

s+ 1
2

+ ψN
s+ 1

2

)
− β

(
LN(uNs+1), ψN

s+ 1
2

+ ψN
s+ 1

2

)
(60)

− (1− 2β)
(
LN(uNs ), ψN

s+ 1
2

+ ψN
s+ 1

2

)
− β

(
LN(uNs−1), ψN

s+ 1
2

+ ψN
s+ 1

2

)
= 0.

Thanks to the spectral properties of the discrete peridynamic operator LN , we get(
LN(uN

s+ 1
2
) + LN(uN

s− 1
2
), ψN

s+ 1
2

+ ψN
s− 1

2

)
=
(
LN(uN

s+ 1
2
), uN

s+ 1
2

)
−
(
LN(uN

s− 1
2
), uN

s− 1
2

)
.

(61)
Then, using (60) and (61), we have(

ψN
s+ 1

2

− ψN
s− 1

2

∆t
, ψN

s+ 1
2

+ ψN
s− 1

2

)
− 2β

(
LN(uN

s+ 1
2
), uN

s+ 1
2

)
(62)

− 2β
(
LN(uN

s− 1
2
), uN

s− 1
2

)
≤ 0.
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Multiplying both sides of (62) by (∆t)3 and adding uNs −uNs = 0 in the inner product
of the first term in the left hand side of (62) and finally using the definition of ψN

s+ 1
2

,

we find(
uNs+1 − uNs , uNs+1 − uNs

)
− β

(
LN(uN

s+ 1
2
), uN

s+ 1
2

)
(63)

≤
(
uNs − uNs−1, u

N
s − uNs−1

)
− β

(
LN(uN

s− 1
2
), uN

s− 1
2

)
.

Therefore, dividing both sides by (∆t)2 and using a recurrence argument we obtain(
uNs+1 − uNs

∆t
,
uNs+1 − uNs

∆t

)
− β

(∆t)2

(
LN(uN

s+ 1
2
), uN

s+ 1
2

)
≤
(
uN1 − uN0

∆t
,
uN1 − uN0

∆t

)
− β

(∆t)2

(
LN
(
uN1

2

)
, uN1

2

)
.

Hence, ∥∥∥∥uNs+1 − uNs
∆t

∥∥∥∥2

H2
p(V )

− β

(∆t)2

(
LN(uN

s+ 1
2
), uN

s+ 1
2

)
≤M0, (64)

where M0 =
∥∥∥uN1 −uN0∆t

∥∥∥2

H2
p(V )
− β

(∆t)2

(
LN
(
uN1

2

)
, uN1

2

)
≥ 0, as Lemma 2 ensures that

− (LN(ω), ω) ≥ 0 for all ω.

We notice that
∥∥∥uNs+1−uNs

∆t

∥∥∥2

H2
p(V )

and − β
(∆t)2

(
LN(uN

s+ 1
2

), uN
s+ 1

2

)
are positives. As a

consequence, thanks to (64) we find∥∥uNs+1 − uNs
∥∥
H2
p(V )
≤M0∆t,

and ∥∥uN(ts + ∆t)
∥∥
H2
p(V )
≤
∥∥uN(ts)

∥∥
H2
p(V )

+M0∆t

≤
∥∥uN(ts −∆t)

∥∥
H2
p(V )

+ 2M0∆t

≤ · · · ≤
∥∥uN(0)

∥∥
H2
p(V )

+M0 (ts + ∆t) .

Thus, if we choose M1 =
∥∥uN(0)

∥∥
H2
p(V )

, we get the thesis. �

4. Numerical tests

In this section we validate the proposed scheme and collect several simulations in or-
der to investigate the properties of the solutions of the nonlinear peridynamic model (9).
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t = 0. t = 5.

t = 7.5. t = 10.

Figure 3. The initial condition and the solution at times t = 2.5,t = 5, t = 7.5
and t = 10. The parameters for the simulation are δ = 0.2, ∆x = 10−2, and
∆t = 10−4.

4.1. Validation of spectral semi-discretization scheme. To validate the results
of the peridynamic scheme, we implement the following 2D benchmark problem. We
consider a thin lamina in the spatial domain [0, 1] × [0, 1] and we discretize it with
a bi-dimensional mesh using the same space step ∆x = 0.01 on both directions. We
assume that the lamina is subjected to the uniform initial displacement u0(x1, x2) =
−0.5x1 − 0.5x2, and we fix δ = 0.2 as horizon.

We take the micromodulus function C(x1, x2) = exp (−x2
1 − x2

2), and we choose
w(η) = ηr, with r = 3. Moreover, we assume that the body is not subjected to
external forces, namely b ≡ 0 and the constant density of the body is ρ(x1, x2) = 1.
For the implementation of the Newmark-β method, we take β = 1/4.

In Figure 3, we plot the initial condition and the behavior of the solution in the spatial
domain as time evolves. The convergence of the fully-discrete scheme is evaluated by
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∆x Ets
L2 convergence rate

0.2 5.1194× 10−1 −
0.1 6.8616× 10−2 2.8994

0.05 1.2494× 10−2 2.6783

0.025 2.1966× 10−3 2.6051

0.0125 54138× 10−4 2.4735

Table 1. The relative L2-error at time ts = 5 as function of the space step,
for ∆t = 10−4.

∆t Ets
L2 convergence rate

0.1 1.1271× 10−6 −
0.05 2.0212× 10−7 2.4793

0.025 7.3230× 10−8 1.9720

0.01 4.9246× 10−9 2.2943

0.005 6.5037× 10−10 2.4587

Table 2. The relative L2-error at time ts = 5 as function of the time step,
for ∆x = 10−4.

computing the relative error in the discrete L2(V ) norm at time ts:

Ets
L2 =

∑
n

∣∣uNn,s − u∗(xn, ts)∣∣2∑
n

∣∣uNn,s∣∣2 ,

where u∗ denotes the reference solution for the problem.
We notice that finding an exact solution of a non-linear problem is a not trivial issue.

Therefore, in this work we determine u∗ using our scheme with a finer mesh.
In Table 1 we choose a very small time step ∆t = 10−4 and we depict the error Ets

L2

between the exact solution and the numerical one for different value of the space step
∆x at time ts = 5. We can also observe that the rate of convergence of the scheme
seems in accordance with the theoretical results about the accuracy of the method.

Additionally, we perform a convergence analysis also with respect to the time step.
Using the same setting and data as before, we fix ∆x = 10−4 and we compute the error
Ets
L2 between the exact solution and the numerical one for different values of the time

step ∆t at time ts = 5. Table 2 shows the values of the relative error and that the
convergence rate seems to be in accordance with the theoretical results.

Moreover, in order to overcome the limitation of periodic boundary conditions due to
the spectral spatial discretization, we use a volume penalization technique. We recall
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∆x Ets
L2 convergence rate

0.2 7.8142× 10−1 −
0.1 1.2049× 10−1 2.6972

0.05 2.5370× 10−2 2.4725

0.025 6.1826× 10−3 2.3193

0.01 8.2514× 10−4 2.2570

Table 3. With reference to Section 4.1, the relative L2-error corresponding
to the spectral method with volume penalization at time ts = 5 as function of
the space step, for ∆t = 10−4.

that the penalization procedure extend the computational domain V to a fictitious one
Ω by a factor µ > 0, in order that

Ω = V ∪ Γ,

where Γ denotes the constrained domain, see Figure 4 . It imposes the periodic bound-
ary conditions to the extended domain and then penalizes the solution on Γ by means
of a penalization term, which depends on a factor ε > 0 called penalization factor. It
results that the penalization term converges to zero as the penalization factor ε goes to
zero. For a complete description of the technique in the one-dimensional case, we refer
the reader to [33].

We validate the spectral method with volume penalization by making a comparison
between the exact solution and the numerical one. We work in the same setting as
before and we fix ε = 0.2 as penalization factor. Table 3 summarizes the error study.

Figure 4. With reference to Section 4.1: the reference domain V , its bound-
ary ∂V and the constrained domain Γ. The fictitious domain is Ω = V ∪ Γ.

4.2. Comparison between Newmark-β and Störmer-Verlet methods. In this
section we test the performance of the two methods with respect to the time step ∆t.
For a description of the Störmer-Verlet method, we refer the reader to [39, 33, 9].
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∆t
Ets
L2

Newmark-β Störmer-Verlet

0.1 4.6812× 10−6 5.1511× 10−4

0.05 2.9276× 10−7 3.4650× 10−5

0.01 4.6629× 10−9 3.4634× 10−5

0.005 2.8706× 10−10 3.0868× 10−6

0.001 2.6360× 10−12 2.3476× 10−7

Table 4. With reference to Section 4.2, the relative L2-error at time ts = 5
as function of the time step, for ∆x = 0.01.

We take under consideration a thin lamina in the spatial domain [0, 1] × [0, 1] and
we discretize it with a bi-dimensional mesh using the same space step ∆x = 0.01 on
both directions. We choose u0(x1, x2) = −0.5x1 − 0.5x2 as initial condition, and we fix
δ = 0.2 as horizon. We choose the same parameters as in the previous test.

In Table 4, we compute the relative L2 error at time ts = 5 between the exact solution
and the numerical one obtained both with the Newmark-β method and the Störmer
Verlet method for decreasing time step values. We can observe that the Newmark-β
method allows us to have the same accuracy of the Störmer-Verlet scheme, but using
a greater time step.

4.3. The case of a discontinuous initial condition. In this section, we study the
behavior of the solution when the initial condition is discontinuous. We consider [0, 1]×
[0, 1] as domain of computation. We take the micromodulus function as in the sections
above, r = 3 and we fix the size of the horizon as δ = 0.2. We choose a jump-type
discontinuity u0(x1, x2) = χ[1/2,1]×[1/2,1](x1, x2), and v0(x1, x2) = 0 as initial condition.
Figure 5 shows the evolution of the solution at times t = 3.5, t = 4, t = 5.5 and t = 6.5.
We can notice the formation of waves travelling with different phase speeds, with an
increasing amplitude and a decreasing wavelength propagating from the discontinuous
point. The parameters for the simulation are ∆x = 10−2, ∆t = 10−4 and β = 1/4.

Moreover, we perform an error analysis also in this case. Table 5 shows the lost an
order of convergence due to the presence of a discontinuity in the initial condition.

5. Conclusions and future works

In this paper a new bi-dimensional peridynamic discretization model has been pro-
posed. It is based on a spectral Fourier discretization for the spatial domain and the
implementation of the Newmark-β method for the time marching. We have recalled a
convergence result for the semi-discrete problem and we have proved the convergence
of the fully-discrete linear problem.
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u(x, 3.5) u(x, 4)

u(x, 5.5) u(x, 6.5)

Figure 5. With reference to Section 4.3: the evolution of the solution for
δ = 0.2 corresponding to the initial condition u0(x) = χ[1/2,1]×[1/2,1], v0(x) = 0.

The parameters for the computed solution are β = 1/4, ∆x = 10−2 and
∆t = 10−4.

∆x Ets
L2 convergence rate

0.2 3.4418× 10−1 −
0.1 1.2339× 10−1 1.4799

0.05 5.9369× 10−2 1.2677

0.025 2.5997× 10−2 1.2236

0.0125 8.2514× 10−4 2.2570

Table 5. With reference to Section 4.3, the relative L2-error at time ts = 5
as function of the space step, for ∆t = 10−4.
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Our results shows that spectral techniques perform very well in the nonlinear case
and the Newmark-β method allows us to have a good accuracy without using a too
small time step.

In future, we would like to extend the analytical result on the convergence of the
fully discrete scheme to the nonlinear case. Moreover, we aim to couple our approach
to techniques based on finite element methods or mimetic finite difference methods (see
for example [2, 34]), following the same strategy proposed in [39].
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