We show that every 3-(α, δ) -Sasaki manifold of dimension 4n+ 3 admits a locally defined Riemannian submersion over a quaternionic Kähler manifold of scalar curvature 16n(n+ 2)αδ. In the non-degenerate case we describe all homogeneous 3-(α, δ) -Sasaki manifolds fibering over symmetric Wolf spaces and over their non-compact dual symmetric spaces. If αδ> 0 , this yields a complete classification of homogeneous 3-(α, δ) -Sasaki manifolds. For αδ< 0 , we provide a general construction of homogeneous 3-(α, δ) -Sasaki manifolds fibering over non-symmetric Alekseevsky spaces, the lowest possible dimension of such a manifold being 19.
Homogeneous non-degenerate 3-(α,δ)-Sasaki manifolds and submersions over quaternionic Kähler spaces
Dileo G.;
2021-01-01
Abstract
We show that every 3-(α, δ) -Sasaki manifold of dimension 4n+ 3 admits a locally defined Riemannian submersion over a quaternionic Kähler manifold of scalar curvature 16n(n+ 2)αδ. In the non-degenerate case we describe all homogeneous 3-(α, δ) -Sasaki manifolds fibering over symmetric Wolf spaces and over their non-compact dual symmetric spaces. If αδ> 0 , this yields a complete classification of homogeneous 3-(α, δ) -Sasaki manifolds. For αδ< 0 , we provide a general construction of homogeneous 3-(α, δ) -Sasaki manifolds fibering over non-symmetric Alekseevsky spaces, the lowest possible dimension of such a manifold being 19.File | Dimensione | Formato | |
---|---|---|---|
[AGAG 2021] Homogeneous non degenerate3-ad-Sasaki manifolds.pdf
accesso aperto
Descrizione: Articolo principale
Tipologia:
Documento in Versione Editoriale
Licenza:
Creative commons
Dimensione
4.59 MB
Formato
Adobe PDF
|
4.59 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.