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Abstract
We show that every 3-(�, �)-Sasaki manifold of dimension 4n + 3 admits a locally 
defined Riemannian submersion over a quaternionic Kähler manifold of scalar curvature 
16n(n + 2)�� . In the non-degenerate case we describe all homogeneous 3-(�, �)-Sasaki 
manifolds fibering over symmetric Wolf spaces and over their non-compact dual symmet-
ric spaces. If 𝛼𝛿 > 0 , this yields a complete classification of homogeneous 3-(�, �)-Sasaki 
manifolds. For 𝛼𝛿 < 0 , we provide a general construction of homogeneous 3-(�, �)-Sasaki 
manifolds fibering over non-symmetric Alekseevsky spaces, the lowest possible dimension 
of such a manifold being 19.

Keywords  Almost 3-contact metric manifold · 3-Sasaki manifold · 3-(�, �)-Sasaki 
manifold · Riemannian homogeneous space · canonical connection · Riemannian 
submersion · quaternionic Kähler manifold · Wolf space · Alekseevsky space · Nomizu 
map

Mathematics Subject Classification  Primary 53B05 · 53C15 · 53C25 · 53D10 · Secondary 
53C27 · 32V05 · 22E25

 *	 Ilka Agricola 
	 agricola@mathematik.uni-marburg.de

	 Giulia Dileo 
	 giulia.dileo@uniba.it

	 Leander Stecker 
	 stecker@mathematik.uni-marburg.de

1	 Fachbereich Mathematik und Informatik, Philipps-Universität Marburg, Campus Lahnberge, 
35032 Marburg, Germany

2	 Dipartimento di Matematica, Università degli Studi di Bari Aldo Moro, Via E. Orabona 4, 
70125 Bari, Italy

http://crossmark.crossref.org/dialog/?doi=10.1007/s10455-021-09762-9&domain=pdf


112	 Annals of Global Analysis and Geometry (2021) 60:111–141

1 3

1 � Introduction and basic notions

1.1 � Introduction

Sasaki manifolds have been studied since the 1970s as an odd dimensional counterpart 
to Kähler geometry. Similarly, 3-Sasaki manifolds are considered the (4n + 3)-dimen-
sional analogue to hyper-Kähler (hK) geometry. However, while these geometries 
are linked via the hK cone of a 3-Sasaki manifold, 3-Sasaki geometry also connects 
to another 4n-dimensional geometry, namely quaternionic Kähler (qK) manifolds. Ini-
tially shown in the regular case by Ishihara and in full generality by C. Boyer, K. Gal-
icki and B. Mann in ’94, every 3-Sasaki manifold locally admits a fibration over a qK 
orbifold [9]. This led to the classification of all homogeneous 3-Sasaki manifolds. The 
reverse construction is given by taking the Konishi bundle of a positive scalar curvature 
qK space, i.e. the orthonormal frame bundle of the quaternionic structure [16]. For qK 
manifolds with negative scalar curvature one does not obtain a 3-Sasaki manifold but a 
so-called pseudo 3-Sasaki structure [19]. This notion, however, did not gather as much 
traction since it comes with a metric of semi-Riemannian signature (4n, 3).

More recently the first two authors investigated Riemannian almost 3-contact metric 
manifolds by means of connections with torsion [2]. They found necessary and suffi-
cient conditions for the existence of compatible connections. Along their investigations, 
they discovered the more specific class of 3-(�, �)-Sasaki manifolds connecting many 
examples on which partial results were known previously. In particular, they showed 
that pseudo 3-Sasaki structures can be turned into negative 3-(�, �)-Sasaki manifolds 
(i. e. with 𝛼𝛿 < 0).

This paper aims to connect both worlds and presents 3-(�, �)-Sasaki geometry as the 
go-to structure above any qK space. We quickly review all necessary notions involv-
ing 3-(�, �)-Sasaki structures in Sect. 1. Using results by Cleyton et al.  [11] we obtain 
a locally defined Riemannian submersion over a qK space establishing the canonical 
connection as the link between both geometries. This is done in Sect. 2. In the 3-Sasaki 
case we recover the result of Boyer, Galicki, Mann. We further show that the scalar 
curvature on the base is a positive multiple of �� . Thus, for negative and degenerate 
3-(�, �)-Sasaki manifolds we obtain submersions onto qK spaces of negative scalar 
curvature, respectively hK spaces. This suggests to investigate non-degenerate homo-
geneous 3-(�, �)-Sasaki manifolds by looking at homogeneous qK manifolds of non-
vanishing scalar curvature. Section 3 is therefore devoted to a hands on construction of 
homogeneous 3-(�, �)-Sasaki spaces over all known homogeneous qK manifolds. This 
yields a construction over symmetric Wolf spaces, deforming the description given in 
[12] (see also [6, Theorem 4]), and by similar means their non-compact duals. Addition-
ally, homogeneous 3-(�, �)-Sasaki manifolds over Alekseevsky spaces are constructed 
using a description of the latter given by Cortés [10]. We provide detailed descriptions 
of the 7-dimensional Aloff–Wallach space, its negative counterpart fibering over the 
4-dimensional Wolf space SU(3)∕S(U(2) × U(1)) , respectively its non-compact dual, as 
well as of the homogeneous 3-(�, �)-Sasaki space T̂(1) in dimension 19 sitting above 
the non-symmetric Alekseevsky space T(1) . In Section 4 we compute the Nomizu map 
associated to the canonical connection, the necessary tool for any further investigation 
of these spaces. In the symmetric base case we find the Nomizu map of the Levi-Civita 
connection as well.
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1.2 � Review of 3‑(˛,ı)‑Sasaki manifolds and their basic properties

We review some basic definitions and properties on almost contact metric manifolds. 
This serves mainly as a reference.

An almost contact metric structure on a (2n + 1)-dimensional differentiable manifold 
M is a quadruple (�, �, �, g) , where � is a (1, 1)-tensor field, � a vector field, � a 1-form, 
g a Riemannian metric, such that

It follows that � has rank 2n and the tangent bundle of M splits as TM = H⊕ ⟨𝜉⟩ , where 
H is the 2n-dimensional distribution defined by H = Im(�) = ker � = ⟨�⟩⟂ . In particular, 
� = g(⋅, �) . The vector field � is called the characteristic or Reeb vector field. The almost 
contact metric structure is said to be normal if N

𝜑
∶= [𝜑,𝜑] + d𝜂 ⊗ 𝜉 vanishes, where 

[�,�] is the Nijenhuis torsion of � [7].
An �-Sasaki manifold is defined as a normal almost contact metric manifold such that 

d� = 2�Φ , � ∈ ℝ
∗, where Φ is the fundamental 2-form defined by Φ(X, Y) = g(X,�Y) . 

For � = 1 , this is a Sasaki manifold. The 1-form � of an �-Sasaki structure is a contact 
form, in the sense that � ∧ (d�)n ≠ 0 everywhere on M. The Reeb vector field is always 
Killing.

An almost 3-contact metric manifold is a differentiable manifold M of dimension 
4n + 3 endowed with three almost contact metric structures (�i, �i, �i, g) , i = 1, 2, 3 , shar-
ing the same Riemannian metric g, and satisfying the following compatibility relations

for any even permutation (ijk) of (123) [7]. The tangent bundle of M splits into the orthogo-
nal sum TM = H⊕ V , where H and V are respectively the horizontal and the vertical dis-
tribution, defined by

In particular H has rank 4n and the three Reeb vector fields �1, �2, �3 are orthonormal. The 
manifold is said to be hypernormal if each almost contact metric structure (�i, �i, �i, g) is 
normal. We denote an almost 3-contact metric manifold by (M,�i, �i, �i, g) , understanding 
that the index is running from 1 to 3.

One of the most interesting classes of almost 3-contact metric manifolds is given by 
3-�-Sasaki manifolds, for which each of the three structures is �-Sasaki. For � = 1 , this 
is just the definition of a 3-Sasaki manifold. As a comprehensive introduction to Sasaki 
and 3-Sasaki geometry, we refer to [8]. In the recent paper [2] the new class of 3-(�, �)
-Sasaki manifolds was introduced, generalizing 3-�-Sasaki manifolds.

Definition 1.2.1  An almost 3-contact metric manifold (M,�i, �i, �i, g) is called a 3-(�, �)
-Sasaki manifold if it satisfies

𝜑
2 = − I + 𝜂 ⊗ 𝜉, 𝜂(𝜉) = 1, 𝜑(𝜉) = 0, 𝜂◦𝜑 = 0,

g(𝜑X,𝜑Y) = g(X, Y) − 𝜂(X)𝜂(Y) ∀X, Y ∈ �(M).

𝜑k = 𝜑i𝜑j − 𝜂j ⊗ 𝜉i = −𝜑j𝜑i + 𝜂i ⊗ 𝜉j, 𝜉k = 𝜑i𝜉j = −𝜑j𝜉i, 𝜂k = 𝜂i◦𝜑j = −𝜂j◦𝜑i

H ∶=

3�
i=1

ker �i, V ∶= ⟨�1, �2, �3⟩.

(1)d�i = 2�Φi + 2(� − �)�j ∧ �k



114	 Annals of Global Analysis and Geometry (2021) 60:111–141

1 3

for every even permutation (ijk) of (123), where � ≠ 0 and � are real constants. A 3-(�, �)
-Sasaki manifold is called degenerate if � = 0 and non-degenerate otherwise. Non-degener-
ate 3-(�, �)-Sasaki manifolds will be distinguished into positive and negative ones, depend-
ing on whether 𝛼𝛿 > 0 or 𝛼𝛿 < 0.

Remark 1.2.1  Recall that the distinction into degenerate, positive, and negative 3-(�, �)
-Sasaki manifolds stems from their behaviour under H-homothetic deformations [2, 
Section 2.3]:

The deformed structure (��, ��
i
, ��, g�) turns out to be 3-(��, ��)-Sasaki with �� = �c∕a , 

�
� = �∕c . In particular, H-homothetic deformations preserve the class of degenerate 

3-(�, �)-Sasaki manifolds. In the non-degenerate case the sign of the product �� is also pre-
served, which justifies the distinction between the positive and negative case stated in the 
definition above. In fact a 3-(�, �)-Sasaki manifold is positive if and only if it is H-homo-
thetic to a 3-Sasaki manifold, and negative if and only if it is H-homothetic to a 3-(𝛼̃, 𝛿)
-Sasaki manifold with 𝛼̃ = −𝛿 = 1.

We recall some basic properties of 3-(�, �)-Sasaki manifolds whose proofs can be 
found in [2]. Any 3-(�, �)-Sasaki manifold is shown to be hypernormal, thus general-
izing Kashiwada’s theorem [14]. Hence, for � = � one has a 3-�-Sasaki manifold. Each 
Reeb vector field �i is Killing and it is an infinitesimal automorphism of the horizontal 
distribution H , i.e. d�i(X, �j) = 0 for every X ∈ H and i, j = 1, 2, 3 . The vertical distribu-
tion V is integrable with totally geodesic leaves. In particular, the commutators of the 
Reeb vector fields are purely vertical and for every even permutation (ijk) of (123) they 
are given by

Meanwhile, the vertical part of commutators of horizontal vector fields is encoded by the 
fundamental form, as is shown in the following useful lemma:

Lemma 1.2.1  For two horizontal vectors X, Y ∈ H we have

Proof  Since the vertical distribution is spanned by the Reeb vector fields, we have

	�  ◻

By the same argument [X, Y]V = 0 if X ∈ H and Y = �j , j = 1, 2, 3 , which is equiva-
lent to the fact that d�i(X, �j) = 0 , i = 1, 2, 3.

𝜂
�
i
= c𝜂i, 𝜉

�
i
=

1

c
𝜉i, 𝜑

�
i
= 𝜑i, g� = ag + b

3∑
i=1

𝜂i ⊗ 𝜂i, a > 0, c2 = a + b > 0.

[�i, �j] = 2��k.

[X, Y]V = −2�

3∑
i=1

Φi(X, Y)�i.

[X, Y]V =

3∑
i=1

�i([X, Y])�i = −

3∑
i=1

d�i(X, Y)�i = −2�

3∑
i=1

Φi(X, Y)�i.
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A remarkable property of 3-(�, �)-Sasaki manifolds is that they are canonical almost 
3-contact metric manifolds, in the sense of [2], which is equivalent to the existence of a 
canonical connection.

We recall here some basic facts about connections with totally skew-symmetric tor-
sion—we refer to [1] for further details. A metric connection ∇ with torsion T on a Rie-
mannian manifold (M, g) is said to have totally skew-symmetric torsion, or skew torsion 
for short, if the (0, 3)-tensor field T defined by

is a 3-form. The relation between ∇ and the Levi-Civita connection ∇g is then given by

It is well-known that any Sasaki manifold (M,�, �, �, g) admits a characteristic connec-
tion, i. e. a unique metric connection ∇ with skew torsion such that ∇� = ∇� = 0 . Its tor-
sion is given by T = � ∧ d� [13]. As a consequence, a 3-Sasaki manifold (M,�i, �i, �i, g) 
cannot admit any metric connection with skew torsion such that ∇�i = ∇�i = 0 for every 
i = 1, 2, 3 . By relaxing the requirement on the parallelism of the structure tensor fields in 
a suitable way, one can define a large class of almost 3-contact metric manifolds, called 
canonical, including 3-(�, �)-Sasaki manifolds, and thus 3-Sasaki manifolds.

Any 3-(�, �)-Sasaki manifold (M,�i, �i, �i, g) is canonical, in the sense that it admits a 
unique metric connection ∇ with skew torsion such that

for every even permutation (ijk) of (123), where � = 2(� − 2�) . The covariant derivatives 
of the other structure tensor fields are given by

If � = 2� , then � = 0 and the canonical connection parallelizes all the structure tensor 
fields. Any 3-(�, �)-Sasaki manifold with � = 2� is called parallel. Notice that this is a 
positive 3-(�, �)-Sasaki manifold.

The torsion T of the canonical connection is given by

where ΦH

i
= Φi + �jk ∈ Λ2(H) is the horizontal part of the fundamental 2-form Φi . Here 

we put �jk ∶= �j ∧ �k and �123 ∶= �1 ∧ �2 ∧ �3 . In particular, for every X, Y ∈ �(M),

The symbol 
i,j,k

�  means the sum over all even permutations of (123). The torsion of the 
canonical connection satisfies ∇T = 0 . The curvature properties of 3-(�, �)-Sasaki mani-
folds will be discussed in detail in a separate publication [3]. We cite from there without 
proof the following special result that will be needed in the following section. It is a side 
result of a lengthy and non-trivial, but otherwise straightforward computation.

T(X, Y , Z) = g(T(X, Y), Z)

∇XY = ∇
g

X
Y +

1

2
T(X, Y).

(2)∇X�i = �(�k(X)�j − �j(X)�k) ∀X ∈ �(M)

∇X�i = �(�k(X)�j − �j(X)�k), ∇X�i = �(�k(X)�j − �j(X)�k).

(3)T = 2�

3∑
i=1

�i ∧ Φi − 2(� − �)�123 = 2�

3∑
i=1

�i ∧ ΦH

i
+ 2(� − 4�) �123,

(4)T(X, Y) = 2�

3∑
i=1

{�i(Y)�iX − �i(X)�iY + Φi(X, Y)�i} − 2(� − �)
i,j,k

��ij(X, Y)�k.
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Proposition 1.2.1  [3] The curvature tensor R of the canonical connection of a 3-(�, �)
-Sasaki manifold satisfies for any X, Y , Z ∈ H and i, j, k, l = 1, 2, 3 the identities

where in the last two identities  (ijk) is an even permutation of (123).

2 � The Riemannian submersion over a quaternionic Kähler base

2.1 � The canonical submersion

In [11] the authors discuss the geometry of Riemannian manifolds admitting metric 
connections ∇� with parallel skew torsion � and reducible holonomy. This applies, in 
particular, to the canonical connection of 3-(�, �)-Sasaki manifolds. We shortly recall 
their notation.

Suppose the tangent space TM decomposes under the action of the holonomy group 
Hol of ∇� into a sum of irreducible representations �1,… , �r, �1,… , �s . Here an irreduc-
ible submodule is called vertical, adequately denoted by �j , if the subspace of ��� act-
ing purely on �j is trivial. Conversely, a subspace �a is called horizontal if the subspace 
�a = ��(�a) ∩ ��� ≠ {0} of ��� acting purely on �a is non-trivial.

We need a slight generalization of the results obtained in [11]. Suppose the tangent 
space decomposes into TM = �1 ⊕⋯⊕ �r ⊕ �1 ⊕⋯⊕ �s as before. Let TM = VΓ ⊕HΓ 
be a decomposition such that

for some subset Γ ⊂ Γ0 = {1,… , r} . Suppose further that for this decomposition the pro-
jection of � onto the space HΓ ⊗ Λ2VΓ satisfies

This condition turns out to be sufficient to prove Lemmas 3.7-3.10 and Remark 3.11 from 
[11]. We obtain

Corollary 2.1.1  Suppose the decomposition TM = VΓ ⊕HΓ from (9) fulfills condition (10). 
Then

(5)R(X, �i, Y , �j) = R(X, Y , Z, �i) = R(�i, �j, �k,X) = 0,

(6)R(�i, �j, �k, �l) = −4��(�ik�jl − �il�jk),

(7)R(�i, �j,X, Y) = 2��Φk(X, Y),

(8)R(X, Y , Z,�iZ) + R(X, Y ,�jZ,�kZ) = 2��Φi(X, Y)‖Z‖2,

(9)HΓ ∶=

s⨁
a=1

𝔥a ⊕
⨁
j∈Γ0⧵Γ

𝔳j, VΓ ∶=
⨁
j∈Γ

𝔳j,

(10)0 = prHΓ⊗Λ2VΓ
𝜏 ∈ HΓ ⊗ Λ2

VΓ ⊂ Λ3(HΓ ⊕ VΓ).
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(a)	 the distribution VΓ is the vertical distribution of a locally defined Riemannian submer-
sion (M, g)

�

⟶ (N, gN) with totally geodesic leaves,
(b)	 there exists a 3-form � ∈ Λ3N satisfying �∗

� = prΛ3HΓ
�,

(c)	 ∇� ∶= ∇gN +
1

2
� defines a connection with parallel skew torsion � on N. In particular, 

we have

for the horizontal lifts X, Y ∈ TM of the vectors fields X, Y ∈ TN.

Equation (11) is not stated explicitely in [11] but follows directly from ∇gN
X
Y = �∗(∇

g

X
Y) 

for Riemannian submersions [17, Prop. 13]. To a Riemannian submersion one assigns the 
O’Neill tensors

Here the subscripts denote projection on the respective subspaces. For the submersion 
above A and T  simplify:

Lemma 2.1.1  The O’Neill tensors A and T  associated to the submersion defined by 
TM = VΓ ⊕HΓ are given by

Proof  Since HΓ and VΓ are ∇�-holonomy invariant (∇�

X
YHΓ

)VΓ
= (∇�

X
YVΓ

)HΓ
= 0 . Thus, 

g(∇
g

X
YHΓ

, ZVΓ
) = −

1

2
�(X, YHΓ

, ZVΓ
) and g(∇

g

X
YVΓ

, ZHΓ
) = −

1

2
�(X, YVΓ

, ZHΓ
) . The first 

expression follows directly. The identity T = 0 is then an immediate consequence of condi-
tion (10). 	�  ◻

The vanishing of T  does not come as a surprise since it is equivalent to the fibers being 
totally geodesic.

We now discuss the situation for 3-(�, �)-Sasaki manifolds. By (2) the holonomy repre-
sentation of the canonical connection ∇ of a 3-(�, �)-Sasaki manifold splits into the hori-
zontal and vertical subspaces H and V . In the non-parallel case V is irreducible, in the 
parallel case it decomposes into 3 trivial 1-dimensional representations. In either case the 
curvature properties stated in Proposition 1.2.1 allow us to prove:

Lemma 2.1.2  The vertical distribution V of a 3-(�, �)-Sasaki manifold is vertical with 
respect to the above notation.

Proof  By the Ambrose–Singer Theorem the holonomy algebra ��� of the holonomy group 
Hol(p) at a point p is given by

where P
�
 denotes parallel transport along � and R(X, Y) ∈ ��(TqM) the curvature opera-

tor. The horizontal and vertical distribution are invariant under parallel transport with 
respect to the canonical connection. Thus, we may assume � to be trivial when investigat-
ing the holonomy action on these distributions. By (5) we know that the holonomy is only 

(11)∇�

X
Y = �∗(∇

�

X
Y),

AXY = (∇
g

XH

YH)V + (∇
g

XH

YV)H, TXY = (∇
g

XV

YH)V + (∇
g

XV

YV)H.

g(AXY , Z) = −
1

2
(�(XHΓ

, YHΓ
, ZVΓ

) + �(XHΓ
, YVΓ

, ZHΓ
)), T = 0.

��� = {P−1
𝛾
◦R(P

𝛾
X,P

𝛾
Y)◦P

𝛾
| 𝛾 some path from p to q, X, Y ∈ TpM} ⊂ ��(TpM)
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non-trivial if X, Y ∈ V or X, Y ∈ H . In the first case (6) and (7) show that every element 
of ��� acting non-trivially on V must also act non-trivially on H . The action of an element 
R(X, Y), X, Y ∈ H , on V is again given by (7). Any such element of ��� acts non-trivially 
on V if � ≠ 0 and Φi(X, Y) ≠ 0 for some i = 1, 2, 3 . In this case R(X, Y) is also a non-trivial 
operator on H by (8). 	�  ◻

Proposition 2.1.1  The decomposition TM = H⊕ V of a 3-(�, �)-Sasaki manifold M satis-
fies the conditions in Corollary 2.1.1. In particular, there exists a locally defined Riemann-
ian submersion � ∶ M → N such that

Definition 2.1.1  We will call � ∶ M → N the canonical submersion of a 3-(�, �)-Sasaki 
manifold.

Proof (of Proposition 2.1.1)  By (2) and Lemma 2.1.2 the decomposition TM = V⊕H is of 
type (9) with respect to the canonical connection ∇ . By (3) the projection of the torsion 
onto H⊗ Λ2V vanishes, satisfying (10). Therefore the conditions of Corollary 2.1.1 are 
satisfied. Moreover, (3) shows that the projection of � onto Λ3H vanishes so the connection 
∇� in (11) for the canonical submersion is the Levi-Civita connection ∇gN on N. 	�  ◻

We observe that the canonical submersion is, indeed, an almost contact metric 3-sub-
mersion in the sense of [20], although we never make explicity use of this property (our 
formulas are much more detailed than the general results obtained therein).

2.2 � The quaternionic Kähler structure on the base

We give a preliminary lemma needed to prove that the base of the canonical submersion 
admits a qK structure. Recall that a basic vector field on M is a horizontal vector field 
which is projectable, that is �-related to some vector field defined on N. If X ∈ TN , the 
horizontal lift of X is the unique basic vector field X ∈ TM such that �∗X = X.

Lemma 2.2.1  For any vertical vector field X ∈ V and for any basic vector field Y ∈ H we 
have

Proof  We first use the identity g(∇
g

X
Y , Z) = −

1

2
g([Y ,Z],X) for any vector fields 

X ∈ V, Y , Z ∈ H , with Y and Z projectable, of a Riemannian submersion [17, Proposition 
13]. Note that the horizontal and vertical distributions of the Riemannian submersion agree 
with the same notion in the 3-(�, �)-Sasaki setting. Further, we make use of Lemma 1.2.1 
to obtain

Therefore

(12)∇
gN
X
Y = �∗(∇X

Y).

(∇XY)H = −2�

3∑
i=1

�i(X)�iY .

g(∇
g

�i
Y , Z) = −

1

2
g([Y ,Z], �i) = �Φi(Y , Z).
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	�  ◻

Theorem 2.2.1  The base N of the canonical submersion � ∶ M → N of any 3-(�, �)-Sasaki 
manifold M carries a quaternionic Kähler structure given by

where s ∶ U → M is any local smooth section of � . The covariant derivatives of the almost 
complex structures 𝜑̌i are given by

where 𝜂̌i(X) = 𝜂i(s∗X) for i = 1, 2, 3.

Proof  Let s be a local section of the canonical submersion � ∶ M → N , hence �∗◦s∗ = id 
and Im(s∗◦𝜋∗ − id) ⊂ V on the image s(N) ⊂ M . Define

for i = 1, 2, 3 . The horizontal and vertical distributions, H and V , are invariant under �i . 
Thus, 𝜋∗◦𝜑i = 𝜑̌i◦𝜋∗ on s(N). This yields

Now use that (�i|H)2 = −id|H and (�i|H)(�j|H) = ±�k|H with sign ± depending on whether 
(ijk) is an even or odd permutation of (123). This shows 𝜑̌2

i
= −id and 𝜑̌i𝜑̌j = ±𝜑̌k.

Finally, by means of (12) and (2), we show that the quaternionic structure is parallel. 
First

By the properties of any Riemannian submersion we have that 
(
�∗

(
�i(s∗Y)

))
= (�i(s∗Y))H 

wherever the right side is defined, that is on the image s(N) ⊂ M . Thus, we take the 
covariant derivatives in the direction of s∗X resulting in a vertical correction term 
X̂ = X − s∗X ∈ V . Recall that ∇ and �i preserve the horizontal and the vertical distribution. 
Using Lemma 2.2.1, we obtain

g(∇XY , Z) = g(∇
g

X
Y , Z) +

1

2
T(X, Y , Z) =

3∑
i=1

�i(X)(�Φi(Y , Z) + �Φi(Y , Z))

= −2�

3∑
i=1

�i(X)g(�iY , Z).

𝜑̌i = 𝜋∗◦𝜑i◦s∗, i = 1, 2, 3,

∇
gN
X
𝜑̌i = 2𝛿(𝜂̌k(X)𝜑̌j − 𝜂̌j(X)𝜑̌k),

𝜑̌i = 𝜋∗◦𝜑i◦s∗

𝜑̌i𝜑̌j = 𝜑̌i◦(𝜋∗◦𝜑j◦s∗) = 𝜋∗◦(𝜑i𝜑j)◦s∗.

(∇
gN
X
𝜑̌i)Y = (∇

gN
X
(𝜑̌iY)) − (𝜑̌i(∇

gN
X
Y)) = 𝜋∗∇X

(𝜑̌iY) − 𝜑̌i

(
𝜋∗(∇X

Y)
)

= 𝜋∗∇X

(
𝜋∗

(
𝜑i(s∗Y)

))
− 𝜋∗

(
𝜑i

(
s∗

(
𝜋∗

(
∇

X
Y
))))

.

∇
X

(
𝜋∗

(
𝜑i(s∗Y)

))
= ∇s∗X

(𝜑i(s∗Y))H + ∇X̂(
(
𝜋∗

(
𝜑i(s∗Y)

))
)

=
(
∇s∗X

(
𝜑i(s∗Y)

))
H
− 2𝛼

3∑
l=1

𝜂l(X̂)𝜑l

(
𝜑i(s∗Y)

)
H
.
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For the second summand, the horizontal projection is given by

Recombining both identities we obtain

Here we used the defining identity (2) of the canonical connection for any even permuta-
tion (ijk) of (123). Therefore, the quaternionic structure is parallel and N is quaternionic 
Kähler. 	�  ◻

Remark 2.2.1  A priori the quaternionic structure may depend on the chosen section s. 
Indeed, the individual almost complex structures 𝜑̌i vary with s. However, following the 
work of Piccinni and Vaisman [18], one can see that the quaternionic structure is preserved 
under the Bott connection D̊ ∶ V ×H → H defined by D̊VX = [V ,X]H , since

This implies that the quaternionic structure is projectable and, thus, independent of choices.

Corollary 2.2.1  A 3-(�, �)-Sasaki manifold fibers locally over a hyperkähler manifold if it is 
degenerate.

Remark 2.2.2  Apart from the degenerate case the induced quaternionic Kähler structure is 
hyperkähler if and only if s∗X ∈ H for all X ∈ TN . Such a section exists if and only if the 
horizontal distribution is tangent to s(N) and, thus, integrable. This is in contrast to Lemma 
1.2.1 for any 3-(�, �)-Sasaki manifold.

We can now relate the curvature of N with that of M.

Theorem 2.2.2  Let � ∶ M → N be the canonical submersion of a 3-(�, �)-Sasaki manifold. 
Then

Proof  By Lemma 2.1.1 and (3) for X, Y ∈ H

(
𝜑i

(
s∗

(
𝜋∗

(
∇

X
Y
))))

H

= 𝜑i

(
s∗

(
𝜋∗

(
∇

X
Y
)))

H

= 𝜑i

(
∇s∗X

(s∗Y)
)
H
+ 𝜑i∇X̂(Y)

=
(
𝜑i

(
∇s∗X

(s∗Y)
))

H
− 2𝛼

3∑
l=1

𝜂l(X̂)𝜑i(𝜑l(s∗Y))H.

(∇
gN
X
𝜑̌i)Y = 𝜋∗

(
∇s∗X

(
𝜑i(s∗Y)

)
− 𝜑i

(
∇s∗X

(s∗Y)
)

+ 2𝛼

3∑
l=1

𝜂l(X̂)(𝜑i𝜑l(s∗Y)H − 𝜑l𝜑i(s∗Y)H)
)

= 𝜋∗

(
(∇s∗X

𝜑i)s∗Y − 2𝛼

3∑
l=1

𝜂l(s∗X)(𝜑i𝜑l(s∗Y)H − 𝜑l𝜑i(s∗Y)H)
)

= (𝛽 + 4𝛼)
(
(𝜂k(s∗X)◦s)𝜋∗(𝜑j(s∗Y)) − (𝜂j(s∗X)◦s)𝜋∗(𝜑k(s∗Y))

)

= 2𝛿(𝜂̌k(X)𝜑̌j − 𝜂̌j(X)𝜑̌k)Y .

(D̊
𝜉i
𝜑j)X = [𝜉i,𝜑jX]H − 𝜑j[𝜉i,X]H = ((L

𝜉i
𝜑j)X)H = 2𝛿𝜖ijk𝜑kX.

scalgN = 16n(n + 2)��.
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Let e1,… , e4n be a local adapted frame for H , i.e. an orthonormal frame such that 
�1e4p+1 = e4p+2 , �2e4p+1 = e4p+3 and �3e4p+1 = e4p+4 , 0 ≤ p ≤ n − 1 . Then

From the O’Neill identities one obtains for submersions with T = 0 the Ricci curvature 
identity [5, Proposition 9.36]

The Ricci curvature of M is Ricg = 2�(2�(n + 2) − 3�)g + 2(� − �)((2n + 3)� − �)g|V by 
[2, Proposition 2.3.3]. Combining both identities we have

	�  ◻

Remark 2.2.3  In particular, we recover the scalar curvature result scalgN = 16n(n + 2) 
known in the 3-Sasaki case [8, Theorem 13.3.13].

3 � Construction of non‑degenerate homogeneous 3‑(˛,ı)‑Sasaki 
manifolds

For homogeneous 3-(�, �)-Sasaki manifolds the canonical submersion is invariant. Hence, 
the base N is a homogeneous qK space. In the non-degenerate case Theorem 2.2.2 shows 
that N is a homogeneous quaternionic Kähler space of non-vanishing scalar curvature. 
There are two families of such spaces known: compact qK symmetric spaces, named Wolf 
spaces, their non-compact duals and Alekseevsky spaces. The latter are homogeneous qK 
spaces admitting a solvable transitive group action. Alekseevsky conjectured that all homo-
geneous qK spaces with negative scalar curvature are Alekseevsky spaces [4]. In particu-
lar, the class of non-compact qK symmetric spaces is included in the class of Alekseevsky. 
We will give independent constructions of homogeneous 3-(�, �)-Sasaki manifolds over 
symmetric base spaces and such fibering over Alekseevsky spaces.

3.1 � Homogeneous 3‑(˛,ı)‑Sasaki manifolds over symmetric quaternionic Kähler 
spaces

Let G∕G0 be a real symmetric space, i.e. � = �0 ⊕ �1 with [�i, �j] ⊂ �i+j on the level of 
Lie algebras. Suppose there exists a connected subgroup H ⊂ G0 such that �0 splits into 

AXY = −
1

2
T(X, Y)V = −�

3∑
i=1

Φi(X, Y)�i.

4n∑
i,j=1

g(Aei
ej,Aei

ej) = �
2

4n∑
i,j=1

3∑
k=1

Φ2
k
(ei, ej) = �

2
⋅ 3 ⋅ 4n = 12n�2.

Ricg(X, Y) = �
∗RicgN (X, Y) − 2

4n∑
j=1

g(AXej,AYej).

scalgN =

4n∑
i=1

RicgN (�∗ei,�∗ei) =

4n∑
i=1

Ricg(ei, ei) + 2

4n∑
i,j=1

g(Aei
ej,Aei

ej)

= 4n ⋅ 2�(2�(n + 2) − 3�) + 24n�2 = 16n(n + 2)��.
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a direct sum of Lie algebras �0 = �⊕ ��(1) . Finally, assume that �ℂ
1
= ℂ

2
⊗

ℂ
W  , for 

some �ℂ-module W of dim
ℂ
W = 2n , and the adjoint action of �ℂ

0
 is given by

where ��(1)ℂ = ��(2)ℂ = ��(2,ℂ) acts by multiplication on ℂ2 . We will call (G,G0,H) 
generalized 3-Sasaki data.

Remark 3.1.1 

(a)	 For compact G this is called 3-Sasaki data in [12, Definition 12, p. 12].
(b)	 Consider the homogeneous space M = G∕H . The assumptions above imply that 

� = �⊕� with � = ��(1)⊕ �1 is a reductive decomposition. We rename the spaces 
V = ��(1) and H = �1 to express their role as vertical and horizontal subspaces of a 
3-(�, �)-Sasaki manifold via TpM ≅ � . For clarity we restate the bracket relations 
between all these spaces. We have � = �⊕ V⊕H , where � and V are commuting 
subalgebras. Thus they form the joint subalgebra �⊕ V = �0 ⊂ � . The full set of com-
mutator relations is 

 In particular, both V and H are �-invariant.
(c)	 Since G∕G0 is a symmetric space there exists a dual symmetric space G∗∕G0 for every 

generalized 3-Sasaki data (G,G0,H) . The Lie algebras can then be identified as 

 It is then clear that (G∗,G0,H) is generalized 3-Sasaki data as well. This yields pairs 
of compact and non-compact generalized 3-Sasaki data. For clarity we will denote the 
compact top Lie group by G and the non-compact one by G∗.

(d)	 By [12] any 3-Sasaki data gives rise to a homogeneous 3-Sasaki manifold. They were 
completely determined in [9] by the fact that they are fiber-bundles over the quaterni-
onic Kähler base space G∕G0 . The non-compact G∗ are thus given as the isometry group 
of the non-compact quaternionic Kähler symmetric spaces [5, p. 409]. Alltogether, we 
obtain Table 1.

�ℂ ⊕ ��(1)ℂ ∋ (A,B) ⋅ ((z1, z2)⊗ w) = B(z1, z2)⊗ w + (z1, z2)⊗ Aw,

[�, �] ⊂ � [V,V] ⊂ V [�,V] = 0

[�,H] ⊂ H [V,H] ⊂ H [H,H] ⊂ V⊕ �.

(13)�∗ = �⊕ V⊕ iH ⊂ �ℂ.

Table 1   Complete table of 
generalized 3-Sasaki data

G G
∗ H G

0
dim

Sp(n + 1) Sp(n, 1) Sp(n) Sp(n)Sp(1) 4n + 3 n ≥ 0

SU(n + 2) SU(n, 2) S(U(n) × U(1)) S(U(n) × U(2)) 4n + 3 n ≥ 1

SO(n + 4) SO(n, 4) SO(n) × Sp(1) SO(n)SO(4) 4n + 3 n ≥ 3

G2 G2
2

Sp(1) SO(4) 11
F4 F−20

4
Sp(3) Sp(3)Sp(1) 31

E6 E2
6

SU(6) SU(6)Sp(1) 43
E7 E−5

7
Spin(12) Spin(12)Sp(1) 67

E8 E−24
8

E7 E7Sp(1) 115
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Theorem  3.1.1  Consider some generalized 3-Sasaki data (G,G0,H) and 0 ≠ �, � ∈ ℝ . 
Additionally suppose 𝛼𝛿 > 0 if G is compact and 𝛼𝛿 < 0 if G is non-compact.

Let �(X, Y) = tr(ad(X)◦ad(Y)) denote the Killing form on � . Then define the inner prod-
uct g on the tangent space TpM = Tp(G∕H) ≅ � by

Let �i = ��i ∈ V = ��(1) , where the �i are the elements of ��(1) = ��(2) given by

Define endomorphisms �i ∈ End�(�) for i = 1, 2, 3 by

Together with �i = g(�i, ⋅) the collection (G∕H,�i, �i, �i, g) defines a homogeneous 3-(�, �)
-Sasaki structure.

Before we proceed with the proof, we collect some observations.

Remark 3.1.2 

(a)	 In case 𝛼𝛿 > 0 the given 3-(�, �)-Sasaki structure is obtained via a H-homothetic defor-
mation with parameters a =

1

��
 , b =

1

�2
−

1

��
 , c = 1

�
 from the 3-Sasaki structure given 

in [12].
(b)	 Consider a homogeneous 3-(�, �)-Sasaki manifold (G∕H,�i, �i, �i, g) with 𝛼𝛿 > 0 such 

that the isotropy group H is connected, i.e. G∕H ≠ ℝℙ
4n+3 . Then a H-homothetic 

deformation with a = �� and c = � induces a homogeneous 3-Sasaki manifold with 
G∕H ≠ ℝℙ

4n+3 and thus is given by the model in [12]. By definition of H-homothetic 
deformations the above inverse deformation will restore the original objects. Thus, 
(G∕H,�i, �i, �i, g) is given by the construction in the theorem.

(c)	 Usually the real representation �1 of � will be irreducible and will only become reduc-
ible when complexified, thus we cannot describe the action of V = ��(1) on H easily, 
but from the complexified action we still find that the relations ad �2

i
= −�2id and 

ad �i◦ad �j = ±�ad �k when (ijk) is an even, resp. odd permutation of (123) hold on H.
(d)	 The Riemannian metric on H is a fixed multiple of the Killing form on � and thus the 

projection onto the symmetric orbit space 

 is a Riemannian submersion. Indeed, this is the canonical submersion obtained in 
Theorem 2.2.1.

(e)	 The real projective space ℝP4n+3 =
Sp(n+1)

Sp(n)×ℤ2

 and its non compact dual Sp(n,1)

Sp(n)×ℤ2

 also admit 
3-(�, �)-Sasaki structures. They are obtained as the quotient of S4n+3 = Sp(n+1)

Sp(n)
 , resp. 

Sp(n,1)

Sp(n)
 by the action of ℤ2 inside the fiber. Since the action is discrete these spaces can-

not be discerned in the Lie algebra picture. Note that all relevant tensors are invariant 

g|V =
−�

4�2(n + 2)
, g|H =

−�

8��(n + 2)
, V ⟂ H.

�1 =

[
i 0

0 − i

]
, �2 =

[
0 − 1

1 0

]
, �3 =

[
0 − i

−i 0

]
.

�i|V =
1

2�
ad �i, �i|H =

1

�
ad �i.

G∕H → G∕G0
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under the ℤ2 action and thus local results obtained for S4n+3 = Sp(n+1)

Sp(n)
 , resp. Sp(n,1)

Sp(n)
 , 

remain true on ℝP4n+3 and its non compact dual.
(f)	 Since the metric is a multiple of the Killing form and the Killing form is ad-invariant 

[X, ⋅ ] will be metric if it preserves H and V . This is precisely the case if X ∈ V . For 
X ∈ H , we compute with Y ∈ V,Z ∈ H

 Thus [X, ⋅ ] ∈ ��(�) if and only if � = 2� , i.e. we are in the parallel case. This is 
exactly the condition that our homogeneous space is naturally reductive. This can 
only occur if 𝛼𝛿 > 0 , i.e. we are in the positive case.

Proof (of Theorem  3.1.1)  If G is compact, 𝜅 < 0 . If G is of non-compact type, we have 
𝜅|V < 0 while 𝜅|H > 0 by (13) . Thus, in both cases the given metric g is indeed positive 
definite.

Remark 3.1.2 shows tr(ad2�i|H) = tr(−�2id|H) = −4n�2 . On V we have

whenever (ijk) is an even, respectively odd, permutation of (123). Thus, tr(ad2�i|V) = −8�2 
and therefore

On the contrary we have tr(ad �i◦ad �j|H) = tr(±ad �k|H) = 0 as its trace on the com-
plexification vanishes. And similar [�i, [�j, �k]] = 0 if (ijk) is any permutation of (123) or 
[�i, [�j, �k]] = 4�2�j if i = k ≠ j . In any case tr(ad �i◦ad �j) = 0 and, hence, g(�i, �j) = 0 if 
i ≠ j.

Next we check that the endomorphisms �i are metric almost complex structures on the 
complement to �i . Note that they vanish on their corresponding �i . Furthermore,

Since H and V are invariant under �i we check orthogonality on each component individu-
ally. On H use the associativity of � to find

and thus g(�iX,�iY) =
−�(�iX,�iY)

8��(n+2)
=

−�(X,Y)

8��2(n+2)
= g(X, Y) . On V we have

if (ijk), (ij�k�) are according permutations of (123) and the left side vanishes whenever j or 
j’ equals i.

g([X, Y], Z) =
−1

8��(n + 2)
�([X, Y], Z) =

1

8��(n + 2)
�(Y , [X, Z]) = −

�

2�
g(Y , [X, Z]).

[�i, [�i, �j]] = ±2�[�i, �k] = −4�2�j,

g(�i, �i) =
−tr(ad2�i)

4�2(n + 2)
=

−tr(ad2�i|H) − tr(ad2�i|V)
4�2(n + 2)

=
8�2 + 4�2n

4�2(n + 2)
= 1.

�
2
i
(�j) =

1

4�2
[�i, [�i, �j]] = −�j,

�
2
i
|H =

1

�2
ad2�i|H =

−�2

�2
id = −id.

�(�iX,�iY) = −�
(
X,

1

�2
ad2�iY

)
= �(X, Y)

g(�i�j,�i�j� ) = g
(
1

2�
ad �i(�j),

1

2�
ad �i(�j� )

)
= g(±�k,±�k� ) = g(�j, �j� )
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Next we check the compatibility conditions of the 3 almost contact metric structures. Sup-
pose (ijk) is an even permutation of (123) then �i�j = �k and together with the invariance of 
H under �i we conclude �i◦�j = �k . Further, �i�j|H =

1

�2
ad �i◦ad �j|H =

1

�
ad �k|H = �k|H 

and on V we have

We have thus shown that the given structure is a homogeneous almost 3-contact metric 
structure. It remains to show the 3-(�, �)-Sasaki condition d�i = 2�Φi + 2(� − �)�j ∧ �k , for 
any even permutation (ijk) of (123). We show this case by case. Note that the last summand 
vanishes whenever either entry is in H . Let X ∈ H . Then, since ad �jX ∈ H,

For X, Y ∈ H we use associativity of �

Finally, we have

	�  ◻

3.2 � Negative homogeneous 3‑(˛,ı)‑Sasaki manifolds over Alekseevsky spaces

In order to construct homogeneous 3-(�, �)-Sasaki manifolds we recall the setup in the unified 
construction of Alekseevsky spaces due to Cortés [10]. Let q ∈ ℕ . Set V = ℝ

3,q the real vector 
space with signature (3, q). Let C�0(V) denote the even Clifford algebra over V. Depending 
on q mod 4 there exist exactly one or two inequivalent irreducible C�0(V)-modules. Accord-
ingly, let l ∈ ℕ , if q ≢ 3 mod 4 , or l+, l− ∈ ℕ , if q ≡ 3 mod 4 . Then set

�i�j�i =
1

4�2
[�i, [�j, �i]] = �j = �k�i = �k�i + �j(�i)�i,

�i�j�j = 0 = �i − �i = �k�j − �j(�j)�i,

�i�j�k =
1

4�2
[�i, [�j, �k]] =

1

2�
[�i, �i] = 0 = �k�k + �j(�k)�i.

d�i(�j,X) = �j(�i(X)) − X(�i(�j)) − �i(ad �jX) = −�i(ad �jX) = 0,

2�Φi(�j,X) = 2�g(�j,�iX) =
2�

�
g(�j, ad �iX) = 0.

d�i(X, Y) = X(�i(Y)) − Y(�i(X)) − �i([X, Y]) = −g(�i, [X, Y])

=
1

4�2(n + 2)
�(�i, [X, Y]) =

−1

4�2(n + 2)
�(ad �iY ,X),

2�Φi(X, Y) = 2�g(X,�iY) =
2�

�
g(X, ad �iY) =

−2�

8��2(n + 2)
�(X, ad �iY)

=
−1

4�2(n + 2)
�(X, ad �iY).

(14)

d�i(�j, �k) = �j(�i(�k)) − �k(�i(�j)) − �i([�j, �k]) = −�i(2��i) = −2�,

2�Φi(�j, �k) = 2�g(�j,�i�k) = −2�g(�j, �j) = −2�,

2(� − �)�i+1 ∧ �i+2(�j, �k) = 2(� − �) = 2� − 2�.

� = ��(V)⊕ V ⊕ℝD⊕W,
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where W is the sum of l equivalent irreducible C�0(V)-modules (or the sum of l+ , l− irre-
ducible C�0(V)-modules if there are two inequivalent ones) and D a derivation with eigen-
value decomposition ��(V)⊕ V ⊕W and respective eigenvalues (0, 1, 1/2). The action of 
��(V) on V is given by the standard representation and ��(V) acts on W via the isomor-
phism ��(V) ≅ ����(V) ⊂ C�0(V) e ∧ e� ↦ −

1

2
ee� if e, e′ are orthogonal. V commutes with 

itself and W. Finally the commutators [W,  W] are given by some non-degenerate ��(V)
-equivariant map Π ∶ Λ2W → V  where ��(V) acts on W as ����(V).

Remark 3.2.1  Note that Π is unique up to rescaling along the irreducible summands of W 
[10, Theorem 5]. This rescaling leads to an isomorphism of the Lie algebras �(Π) and �(Π�) 
corresponding to two such maps Π and Π� . The isomorphism extends to an isomorphism 
of the 3-(�, �)-Sasaki structures defined later on. Thus, we will ignore the ambiguity in Π 
from here on.

Notation On V = ℝ
3,q fix an ONB ê1, ê2, ê3, e1,… , eq with signature (+,+,+,−,⋯ ,−) . 

Then with the identification ��(V) ≅ Λ2V  we also obtain a standard basis of the space 
��(V) given by {êi ∧ êj, êi ∧ ek, ek ∧ el}i,j=1,2,3

k,l=1,…,3

.
Denote 𝜎i = 2êk ∧ êj for any even permutation (ijk) of (123). Using the identification 

End(V) = V ⊗ V∗ this implies [𝜎i, êj] = 2êk and [�i, �j] = 2�k where again (ijk) is an even 
permutation of (123).

We further set V = ��(3) ⊂ ��(3, q) , H0 the subspace generated by the elements D and 
êi + 𝜎i and H1 the subspace generated by e1,… , eq ∈ V  and ei ∧ êj ∈ ��(3, q).

The 4-dimensional spaces H0 and ⟨el, el ∧ êj⟩ ⊂ H1 will form the quaternionic subspaces 
inside ��(V)⊕ V ⊕ℝD ⊂ � . Accordingly, we show that they have the only commutators 
with non-trivial V-part.

Lemma 3.2.1  The only non-trivial projections on V of commutators are

for all permutations (ijk) of (123) with ± indicating the sign of the permutation, l = 1,… , q 
and w1,w2 ∈ W.

Proof  The full list of commutators of basis vectors is

𝜋V([𝜎i, 𝜎j]) = ±2𝜎k, 𝜋V([D, êi + 𝜎i]) = −𝜎i, 𝜋V([êi + 𝜎i, êj + 𝜎j]) = ∓2𝜎k,

𝜋V([el, êi ∧ el]) = −𝜎i, 𝜋V([êi ∧ el, êj ∧ el]) = ±
1

2
𝜎k, 𝜋V([w1,w2]) = 𝜋V(Π(w1,w2))

[𝜎i, 𝜎j] = ±2𝜎k, [𝜎i,D] = 0, [êi + 𝜎i, êi ∧ el] = el, [𝜎i, êj + 𝜎j] = ±2(êk + 𝜎k),

[𝜎i, el] = 0, [𝜎i, êi ∧ el] = 0, [êi ∧ el,W] = W, [𝜎i, êj ∧ el] = ±2êk ∧ el,

[D, el] = el, [D, êi ∧ el] = 0, [êi ∧ el, êj ∧ em] = 0, [D, êi + 𝜎i] = êi = (êi + 𝜎i) − 𝜎i,

[D,W] = W, [𝜎i, êi + 𝜎i] = 0, [êi + 𝜎i,W] = W, [êi + 𝜎i, êj ∧ el] = ±2êk ∧ el,

[𝜎i,W] = W, [êi + 𝜎i, el] = 0, [êi ∧ el, êi ∧ em] = −el ∧ em, [êi ∧ el, êj ∧ el] = −êi ∧ êj = ±
1

2
𝜎k

[el, em] = 0, [el,W] = W, [el, êi ∧ em] = 0, [el, êi ∧ el] = êi = (êi + 𝜎i) − 𝜎i
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and finally

where (ijk) is a permutation of (123) with ± indicating the sign of the per-
mutation and l,m = 1,… , q with l ≠ m . For the commutator [W,  W] we have 
[w1,w2] = Π(w1,w2) ∈ V ⊂ H0 ⊕H1 ⊕ V . 	�  ◻

By [10, Proposition 3] the adjoint action � ↷ � = ℝD⊕ V ⊕W ⊂ � is faithful. Thus, 
� is a subalgebra � ⊂ der(�) . Set G the subgroup G ⊂ Aut(�) with Lie Algebra � . Let 
� = ��(q) ⊂ ��(V) ⊂ � and H ⊂ G the corresponding connected subgroup. Then both G 
and H are closed subgroups of Aut(�) . This follows from [10, Corollary 3] and the fact that 
H is closed in Spin0(V) ⊂ G . In particular, G/H is a homogeneous space. We now define 
the desired negative 3-(�, �)-Sasaki structure on M = G∕H.

Theorem 3.2.1  Let �, � ∈ ℝ with 𝛼𝛿 < 0 . Let G, H with Lie algebras �, � as above. Then 
� = V⊕H0 ⊕H1 ⊕W is a reductive complement to � in � . Set

Define the almost complex structures �i ∶ � → � on V , H0 , H1 and W individually. For 
any permutation (ijk) of (123) with signature ± we set

 where � is the Clifford-multiplication on W.

Define a scalar product g[e] by declaring the following vectors to be an orthonormal 
basis of V⊕H0 ⊕H1:

On W we set the scalar product

where ⟨, ⟩ is the scalar product on V and (ijk) is any even permutation of (123). We set W 
orthogonal to V⊕H0 ⊕H1 . Set �i = g(�i, ⋅ ) the dual to �i.

Then (G∕H, g, �i, �i,�i) defines a homogeneous 3-(�, �)-Sasaki manifold.

[êi + 𝜎i, êj + 𝜎j] = [𝜎i, êj] − [𝜎j, êi] + [𝜎i, 𝜎j] = ±4êk ± 2𝜎k = ±4(êk + 𝜎k) ∓ 2𝜎k,

�1 = ��1, �2 = ��2, �3 = ��3.

𝛿𝜎i,
√
−4𝛼𝛿D,

√
−𝛼𝛿(êi + 𝜎i),

√
−4𝛼𝛿 êi ∧ el,

√
−𝛼𝛿 el.

g[e]�W×W (s, t) = (−2𝛼𝛿)−1b(s, t) ∶= (−2𝛼𝛿)−1⟨êi,Π(𝜌(êjêk)s, t)⟩,
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Proof  We first note that the defined scalar product is positive definite and Spin(q)-invariant. 
This is clear on V⊕H0 ⊕H1 and it is shown for b in [10, Theorem 1 and Proposition 9]. 
Thus, the scalar product extends to an invariant Riemannian metric on G/H. The invariance 
under H of the �i is obvious. For an invariant 3-a.c.m. structure, it remains to check that the 
�i are invariant as well. Spin(q) acts trivial on V⊕H0 and on H1 by its adjoint action on 
el ∈ ℝ

q
⊂ V  . On W it acts by Clifford multiplication with vectors in ℝq twice, thus com-

muting with the Clifford multiplication defining the almost complex structures on W.
The endomorphisms �i are compatible with the metric by definition on V⊕H0 ⊕H1 

and by Spin(q) ⋅ Spin(3)-invariance of b on W. Next we check the compatibility conditions 
of the 3 almost contact structures. Again on V⊕H0 ⊕H1 this is a direct consequence of 
the definition and on W we have

Finally we need to check the defining condition d�i = 2�Φi + 2(� − �)�j ∧ �k . By bilin-
earity it suffices to check it for any pair of two basis vectors individually. On V × V this 
is exactly the same computation as in the 3-(�, �)-Sasaki structure over symmetric bases 
(compare (14)). Apart from V × V the equation reduces to d�i = 2�Φi . Note that the left 
hand side reduces to checking the commutators. From Lemma 3.2.1 and the definition 
of the �i we see that both sides vanish for all mixed terms regarding the decomposition 
V⊕H0 ⊕H1 ⊕W of the tangent space. Similarly on H1 if the index l of êi ∧ el , respec-
tively el , is not the same both sides vanish. On H0 ×H0 we compute

In similar fashion for the remaining pairs in H0 ×H0 and on H1 ×H1 we have

for any even permutation (ijk) of (123). Finally, we look at W ×W . Let w1,w2 ∈ W and 
suppose Π(w1,w2) =

∑q

r=1
arer +

∑3

s=1
âsês . Then

and

𝜌(𝜎i)𝜌(𝜎j)w = êk ⋅ êj ⋅ êi ⋅ êk ⋅ w = (−1)2êj ⋅ êk ⋅ êk ⋅ êi ⋅ w = −êj ⋅ êi ⋅ w = 𝜌(𝜎k)w.

d𝜂i(D, êi + 𝜎i) = −𝜂i([D, êi + 𝜎i]) = −𝜂i(−𝜎i) =
1

𝛿
g(𝛿𝜎i, 𝛿𝜎i) =

1

𝛿
,

2𝛼Φi(D, êi + 𝜎i) = 2𝛼g(D,𝜑i(êi + 𝜎i)) =
2𝛼

−2𝛼𝛿
g(
√
−4𝛼𝛿 D,−

√
−𝛼𝛿 2D) =

1

𝛿
.

2

𝛿
= −𝜂k(2𝜎k) = d𝜂k(êi + 𝜎i, êj + 𝜎j) = 2𝛼Φk(êi + 𝜎i, êj + 𝜎j) =

2

𝛿
,

1

𝛿
= −𝜂i(−𝜎i) = d𝜂i(el, êi ∧ el) = 2𝛼Φi(el, êi ∧ el) =

1

𝛿
,

1

2𝛿
= −𝜂k(−

1

2
𝜎k) = d𝜂k(êi ∧ el, êj ∧ el) = 2𝛼Φk(êi ∧ el, êj ∧ el) =

1

2𝛿

d𝜂i([w1,w2]) = −𝜂i(Π(w1,w2)) = −𝜂i

(
q∑

r=1

arer +

3∑
s=1

âsês

)

= −𝜂i

(
3∑

s=1

âs((ês + 𝜎s) − 𝜎s)

)
=

âi

𝛿
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This concludes the proof. 	�  ◻

Remark  We try to motivate the definition. Recall that in [10] Cortés shows that 
��(V)⊕ V ⊕ℝD is isomorphic to a subalgebra of ��(4, q + 1) = Λ2(V ⊕ ⟨e+, e−⟩) , e+, e− 
unit length vectors of corresponding signature, given by the inclusion

Now �i is modeled on ��(V)⊕ V ⊕ℝD after the adjoint action with 
êj ∧ êk + êi ∧ e+ ∈ ��(3)+ ⊂ ��(3)+ ⊕ ��(3)− = ��(4) in the known 
SO(4, q + 1)∕SO(q + 1)SO(3) setting. However, this does not exist as an inner derivative in 
� unlike in the (semi-) simple case.

3.3 � Examples

We begin with an example of the construction over a symmetric Wolf space.

Example 3.3.1  Our first example is the Aloff–Wallach space W1,1 = SU(3)∕S1 = G∕H . In 
this case the isotropy algebra � inside � = ��(3) is the 1-dimensional space generated by

We locate the space ��(1) = ��(2) ⊂ ��(3) as the upper left 2-by-2 block. One checks that 
this is a splitting of ��(3) as necessary. Then for 𝛼, 𝛿 > 0 the Reeb vector fields are given 
by

On the horizontal subspace we choose a basis vector

Then we normalize it g(ẽ1, ẽ1) =
−6tr(ẽ1⋅ẽ1)

24𝛼𝛿
=

1

2𝛼𝛿
 , i.e. e1 =

√
2𝛼𝛿 ⋅ ẽ1 and generate an 

adapted basis:

2𝛼Φi(w1,w2) = 2𝛼g(w1,𝜑iw2) =
2𝛼

−2𝛼𝛿

�
êi,Π

�
w1, êjêkêjêkw2

��

=
(−1)32𝛼

−2𝛼𝛿
⟨êi,Π(w1,w2)⟩

=
1

𝛿

�
êi,

q�
r=1

arer +

3�
s=1

âsês

�
=

âi

𝛿
.

��(V) ↦ Λ2V , V ↦ V ∧ (e+ − e−), D ↦ e+ ∧ e−.

h =

⎡⎢⎢⎣

−i 0 0

0 − i 0

0 0 2i

⎤⎥⎥⎦
.

�1 = �

⎡⎢⎢⎣

i 0 0

0 − i 0

0 0 0

⎤
⎥⎥⎦
, �2 = �

⎡
⎢⎢⎣

0 − 1 0

1 0 0

0 0 0

⎤⎥⎥⎦
, �3 = �

⎡⎢⎢⎣

0 − i 0

−i 0 0

0 0 0

⎤⎥⎥⎦
.

ẽ1 =

⎡⎢⎢⎣

0 0 1

0 0 0

−1 0 0

⎤⎥⎥⎦
.
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Example 3.3.2  Next consider the dual negative 3-(�, �)-Sasaki space SU(2, 1)∕S1 . We real-
ize the Lie algebra

as described in (13). Then as for the Aloff–Wallach space we identify the 1-dimensional 
isotropy � generated by

Analogously the Reeb vector fields are given by

On the horizontal subspace we choose

We have

Thus we find an adapted base of SU(2, 1)∕S1 by e∗
1
= i

√
−2𝛼𝛿ẽ1 and

We now discuss the lowest dimensional example T̂(1) of a negative homogeneous 
3-(�, �)-Sasaki manifold fibering over Alekseevsky space T(1) not obtained by the con-
struction over symmetric spaces.

Remark 3.3.1  The first new example arising from the construction over Alekseevsky 
spaces appears only in dimension 19. Table 2 lists all homogeneous 3-(�, �)-Sasaki man-
ifolds obtained by Theorem  3.2.1 up to dimension 19 and, if existing, the isomorphic 
ones appearing in Table 1, i.e. obtained by Theorem 3.1.1 over non-compact symmetric 
spaces. The list gets more intricate with higher dimension, in particular, there appear two 
inequivalent even Clifford modules for q = 3 beginning in dim 27 and for q ≥ 4 we have 

e2 =
√
2��

⎡
⎢⎢⎣

0 0 i

0 0 0

i 0 0

⎤
⎥⎥⎦
, e3 =

√
2��

⎡
⎢⎢⎣

0 0 0

0 0 1

0 − 1 0

⎤
⎥⎥⎦
, e4 =

√
2��

⎡
⎢⎢⎣

0 0 0

0 0 − i

0 − i 0

⎤
⎥⎥⎦
.

��(2, 1) = �∗ = �⊕ ��(1)⊕ iH ⊂ ��(3)ℂ

h =

⎡⎢⎢⎣

−i 0 0

0 − i 0

0 0 2i

⎤⎥⎥⎦
.

�1 = �

⎡⎢⎢⎣

i 0 0

0 − i 0

0 0 0

⎤⎥⎥⎦
, �2 = �

⎡⎢⎢⎣

0 − 1 0

1 0 0

0 0 0

⎤⎥⎥⎦
, �3 = �

⎡⎢⎢⎣

0 − i 0

−i 0 0

0 0 0

⎤⎥⎥⎦
.

ẽ∗
1
= iẽ1 =

⎡⎢⎢⎣

0 0 i

0 0 0

−i 0 0

⎤⎥⎥⎦
⊂ iH.

g(ẽ∗
1
, ẽ∗

1
) =

−i2

24𝛼𝛿
𝜅(ẽ1, ẽ1) = −

1

2𝛼𝛿
.

e∗
2
=
√
−2��

⎡
⎢⎢⎣

0 0 − 1

0 0 0

−1 0 0

⎤⎥⎥⎦
, e∗

3
=
√
−2��

⎡
⎢⎢⎣

0 0 0

0 0 i

0 − i 0

⎤⎥⎥⎦
, e∗

4
=
√
−2��

⎡
⎢⎢⎣

0 0 0

0 0 1

0 1 0

⎤⎥⎥⎦
.
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dimWq > 4 . Further, observe that the symmetric base cases SU(2, 1)∕U(1) , G(2)

2
∕SO(3) are 

not obtained by this construction.

We now give more concrete descriptions of the C�0(3, q)-modules Wq for q = 0, 1, 2 . 
Note that there are choices to be made though these lead to isomorphisms of the mod-
ules since all these modules are unique. Let ℝ3,q = ⟨e1̂, e2̂, e3̂, e1,… , eq⟩ , where eî have 
signature +1 while ei have signature −1 . Then we have C�0(3, 0) = ℍ , C�0(3, 1) = M2(ℂ) , 
C�0(3, 2) = M4(ℝ) realized as follows. Table  3 lists the cases q = 0 and q = 1 , while 
Table 4 is devoted to the case q = 2.

The notation is as follow: We denote elements eij = eiej ∈ C�0(V) and analogous for 
the action of elements in C�0(V) of higher degree. The last line denotes the square of 
elements in the respective row, which are invariant of choices unlike the matrices itself.

With this we can find the map Π ∶ Λ2W2 → ℝ
3,2.

Theorem  3.3.1  Setting W2 ≅ ℝ
4 = ⟨E1,E2,E3,E4⟩ with the ����(3, 2)-module structure 

above the map Π ∶ Λ2W2 → ℝ
3,2 given by

is ����(3, 2)-invariant and non-degenerate.

Recall that the action of ��(3, q) on the C�0(3, q)-module W, and thereby W ∧W  , is 
given by the isomorphism ad −1 ∶ ��(3, q) → ����(3, q) = C�0(3, q) , ei ∧ ej ↦ −

1

2
eij , 

where i, j ∈ {1̂, 2̂, 3̂, 1,… , q}.

Proof  Non-degeneracy is clear. It suffices to check the invariance on a generating set of 
C�0(3, 2) . One such set is given by e1̂2̂, e2̂3̂, e1̂1, e12 . Each of these map certain subspaces 

Π(E1 ∧ E2) = −ê3 − e1, Π(E1 ∧ E3) = −ê2, Π(E1 ∧ E4) = −ê1 + e2,

Π(E2 ∧ E3) = ê1 + e2, Π(E4 ∧ E2) = ê2, Π(E3 ∧ E4) = ê3 − e1

Table 2   3-(�, �)-Sasaki manifolds over Alekseevsky spaces of dim ≤ 19 , see Remark 3.3.1

Dimension parameters � � alternative description

7 q = 0, l = 0 ��(3)⊕ℝ
3
⊕ℝD 0 Sp(1, 1)∕Sp(1)

11 q = 0, l = 1 ��(3)⊕ℝ
3
⊕ℝD⊕W0

0 Sp(2, 1)∕Sp(2)

q = 1, l = 0 ��(3, 1)⊕ℝ
3,1

⊕ℝD 0 SU(2, 2)∕S(U(2) × U(1))

15 q = 0, l = 2 ��(3)⊕ℝ
3
⊕ℝD⊕ 2W0

0 Sp(3, 1)∕Sp(3)

q = 1, l = 1 ��(3, 1)⊕ℝ
3,1

⊕ℝD⊕W1
0 SU(3, 2)∕S(U(3) × U(1))

q = 2, l = 0 ��(3, 2)⊕ℝ
3,2

⊕ℝD ��(2) SO0(3, 4)∕SO(3) × SO(3)

19 q = 0, l = 3 ��(3)⊕ℝ
3
⊕ℝD⊕ 3W0

0 Sp(4, 1)∕Sp(4)

q = 1, l = 2 ��(3, 1)⊕ℝ
3,1

⊕ℝD⊕ 2W1
0 SU(4, 2)∕S(U(4) × U(1))

q = 2, l = 1 ��(3, 2)⊕ℝ
3,2

⊕ℝD⊕W2
��(2) T̂(1) non symmetric base

q = 3, l = 0 ��(3, 3)⊕ℝ
3,3

⊕ℝD ��(3) SO0(4, 4)∕SO(4) × SO(3)
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of W2 onto one another, hence their action on the exterior product of these subspaces van-
ishes. This yields the identities

Table 3   Choice of C�0(3, q)

-representations for q = 0 and 
q = 1

q = 0 deg 0 ∶ [1] +1
deg 2 ∶ e1̂2̂ = [i], e2̂3̂ = [j], e3̂1̂ = [k] − 1

q = 1 deg 0 ∶
[
1

1

]
+ 1

 deg 2 ∶
e1̂2̂ =

[
i

− i

]
, e2̂3̂ =

[
i

i

]
, e3̂1̂ =

[
− 1

1

]
− 1

e3̂1 =

[
1

− 1

]
, e1̂1 =

[
1

1

]
, e2̂1 =

[
i

−i

]
+ 1

deg 4 ∶
e1̂2̂3̂1 =

[
i

i

]
− 1

Table 4   Choice of C�0(3, q)-representations for q = 2

deg 0 ∶ ⎡⎢⎢⎢⎣

1

1

1

1

⎤⎥⎥⎥⎦

+ 1

deg 2 ∶

e1̂2̂ =

⎡⎢⎢⎢⎣

− 1

1

1

− 1

⎤⎥⎥⎥⎦
, e2̂3̂ =

⎡⎢⎢⎢⎣

− 1

1

− 1

1

⎤⎥⎥⎥⎦
, e3̂1̂ =

⎡⎢⎢⎢⎣

− 1

− 1

1

1

⎤⎥⎥⎥⎦
, e12 =

⎡⎢⎢⎢⎣

1

− 1

−1
1

⎤⎥⎥⎥⎦

− 1

e3̂1 =

⎡⎢⎢⎢⎣

1

1

− 1

− 1

⎤⎥⎥⎥⎦
, e1̂1 =

⎡⎢⎢⎢⎣

1

1

1

1

⎤⎥⎥⎥⎦
, e2̂1 =

⎡⎢⎢⎢⎣

− 1

1

1

−1

⎤⎥⎥⎥⎦
, e3̂2 =

⎡⎢⎢⎢⎣

1

− 1

1

− 1

⎤⎥⎥⎥⎦

+1

e1̂2 =

⎡⎢⎢⎢⎣

−1
1

1

− 1

⎤⎥⎥⎥⎦
, e2̂2 =

⎡⎢⎢⎢⎣

− 1

−1
− 1

− 1

⎤⎥⎥⎥⎦

+1

deg 4 ∶

e1̂2̂3̂1 =

⎡⎢⎢⎢⎣

− 1

1

− 1

1

⎤⎥⎥⎥⎦
, e1̂2̂3̂2 =

⎡⎢⎢⎢⎣

1

1

− 1

−1

⎤⎥⎥⎥⎦

− 1

e1̂2̂12 =

⎡⎢⎢⎢⎣

1

1

1

1

⎤⎥⎥⎥⎦
, e2̂3̂12 =

⎡⎢⎢⎢⎣

− 1

−1
1

1

⎤⎥⎥⎥⎦
, e3̂1̂12 =

⎡⎢⎢⎢⎣

1

− 1

1

− 1

⎤⎥⎥⎥⎦

+1
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The rest is just more computations. We start with e1̂2̂:

For e2̂3̂:

For e1̂1:

And finally for e12:

−2ê1 ∧ ê2(ê3 ± e1) = 0 = Π(e1̂2̂(E1 ∧ E2)) = Π(e1̂2̂(E3 ∧ E4)),

−2ê2 ∧ ê3(ê1 ± e2) = 0 = Π(e2̂3̂(E1 ∧ E4)) = Π(e2̂3̂(E2 ∧ E3)),

−2ê1 ∧ e1(ê2) = 0 = Π(e1̂1(E1 ∧ E3)) = Π(e1̂1(E4 ∧ E2)),

−2e1 ∧ e2(ê2) = 0 = Π(e12(E1 ∧ E3)) = Π(e12(E4 ∧ E2)).

Π(e1̂2̂(E1 ∧ E3)) = Π(E2 ∧ E3) + Π(E1 ∧ −E4) = ê1 + e2 + ê1 − e2 = 2ê1

= −2ê1 ∧ ê2(−ê2) = −2ê1 ∧ ê2(Π(E1 ∧ E3)),

Π(e1̂2̂(E1 ∧ E4)) = Π(E2 ∧ E4) + Π(E1 ∧ E3) = −ê2 − ê2 = −2ê2

= −2ê1 ∧ ê2(−ê1 + e2) = −2ê1 ∧ ê2(Π(E1 ∧ E4)),

Π(e1̂2̂(E2 ∧ E3)) = Π(−E1 ∧ E3) + Π(E2 ∧ −E4) = ê2 + ê2 = 2ê2

= −2ê1 ∧ ê2(ê1 + e2) = −2ê1 ∧ ê2(Π(E2 ∧ E3)),

Π(e1̂2̂(E4 ∧ E2)) = Π(E3 ∧ E2) + Π(E4 ∧ −E1) = −ê1 − e2 − ê1 + e2 = −2ê1

= −2ê1 ∧ ê2(ê2) = −2ê1 ∧ ê2(Π(E4 ∧ E2)).

Π(e2̂3̂(E1 ∧ E2)) = Π(E4 ∧ E2) + Π(E1 ∧ −E3) = ê2 + ê2 = 2ê2

= −2ê2 ∧ ê3(−ê3 − e1) = −2ê2 ∧ ê3(Π(E1 ∧ E2)),

Π(e2̂3̂(E1 ∧ E3)) = Π(E4 ∧ E3) + Π(E1 ∧ E2) = −ê3 + e1 − ê3 − e1 = −2ê3

= −2ê2 ∧ ê3(−ê2) = −2ê2 ∧ ê3(Π(E1 ∧ E3)),

Π(e2̂3̂(E4 ∧ E2)) = Π(−E1 ∧ E2) + Π(E4 ∧ −E3) = ê3 + e1 + ê3 − e1 = 2ê3

= −2ê2 ∧ ê3(ê2) = −2ê2 ∧ ê3(Π(E4 ∧ E2)),

Π(e2̂3̂(E2 ∧ E4)) = Π(E3 ∧ E2) + Π(E3 ∧ −E1) = −ê2 − ê2 = −2ê2

= −2ê2 ∧ ê3(ê3 − e1) = −2ê2 ∧ ê3(Π(E3 ∧ E4)).

Π(e1̂1(E1 ∧ E2)) = Π(E3 ∧ E2) + Π(E1 ∧ E4) = −ê1 − e2 − ê1 + e2 = −2ê1

= −2ê1 ∧ e1(−ê3 − e1) = −2ê1 ∧ e1(Π(E1 ∧ E2)),

Π(e1̂1(E1 ∧ E4)) = Π(E3 ∧ E4) + Π(E1 ∧ E2) = ê3 − e1 − ê3 − e1 = −2e1

= −2ê1 ∧ e1(−ê1 + e2) = −2ê1 ∧ e1(Π(E1 ∧ E4)),

Π(e1̂1(E2 ∧ E3)) = Π(E4 ∧ E3) + Π(E2 ∧ E1) = −ê3 + e1 + ê3 + e1 = 2e1

= −2ê1 ∧ e1(ê1 + e2) = −2ê1 ∧ e1(Π(E2 ∧ E3)),

Π(e1̂1(E3 ∧ E4)) = Π(E1 ∧ E4) + Π(E3 ∧ E2) = −ê1 + e2 − ê1 − e2 = −2ê1

= −2ê1 ∧ e1(ê3 − e1) = −2ê1 ∧ e1(Π(E3 ∧ E4)).
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	�  ◻

To display the algebra � with q = 2, l = 1 corresponding to T̂(1) = G∕H we use the inclu-
sion � ⊂ ���(�) ⊂ ��(ℝ3,2

⊕ℝD⊕W2) . We give these elements as matrices with respect to 
the basis ê1, ê2, ê3, e1, e2,D,E1,E2,E3,E4 of �.

Recall � = ��(3, 2)⊕ℝ
3,2

⊕ℝD⊕W2 . We begin with ��(3, 2):

Π(e12(E1 ∧ E2)) = Π(−E3 ∧ E2) + Π(E1 ∧ E4) = ê1 + e2 − ê1 + e2 = 2e2

= −2e1 ∧ e2(−ê3 − e1) = −2e1 ∧ e2(Π(E1 ∧ E2)),

Π(e12(E1 ∧ E4)) = Π(−E3 ∧ E4) + Π(E1 ∧ −E2) = −ê3 + e1 + ê3 + e1 = 2e1

= −2e1 ∧ e2(−ê1 + e2) = −2e1 ∧ e2(Π(E1 ∧ E4)),

Π(e12(E2 ∧ E3)) = Π(E4 ∧ E3) + Π(E2 ∧ E1) = −ê3 + e1 + ê3 + e1 = 2e1

= −2e1 ∧ e2(ê1 + e2) = −2e1 ∧ e2(Π(E2 ∧ E3)),

Π(e12(E3 ∧ E4)) = Π(E1 ∧ E4) + Π(E3 ∧ −E2) = −ê1 + e2 + ê1 + e2 = 2e2

= −2e1 ∧ e2(ê3 − e1) = −2e1 ∧ e2(Π(E3 ∧ E4)).

2ê1 ∧ ê2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 2 0

−2 0 0

0 0

0 0

0 0

0 0 0 0 0 0 0 0 0 0

0 0 1

0 − 1 0

0 0 1

0 − 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, 2ê3 ∧ ê1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 − 2 0

0 0

2 0 0

0 0

0 0

0 0 0 0 0 0 0 0 0 0

0 1 0

0 0 1

0 − 1 0

0 0 − 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

2ê2 ∧ ê3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0

0 2 0

− 2 0 0

0 0

0 0

0 0 0 0 0 0 0 0 0 0

0 0 1

0 − 1 0

0 0 1

0 − 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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Recall that 2e1 ∧ e2 generates the isotropy algebra �.

2ê1 ∧ e1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 − 2 0

0 0

0 0

−2 0 0

0 0

0 0 0 0 0 0 0 0 0 0

0 − 1 0

0 0 − 1

0 − 1 0

0 0 − 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, 2ê1 ∧ e2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 − 2 0

0 0

0 0

0 0

−2 0 0

0 0 0 0 0 0 0 0 0 0

0 1 0

0 0 − 1

0 − 1 0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

2ê2 ∧ e1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0

0 − 2 0

0 0

− 2 0 0

0 0

0 0 0 0 0 0 0 0 0 0

0 0 1

0 − 1 0

0 0 − 1

0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, 2ê2 ∧ e2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0

0 − 2 0

0 0

0 0

− 2 0 0

0 0 0 0 0 0 0 0 0 0

0 0 1

0 1 0

0 0 1

0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

2ê3 ∧ e1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0

0 0

0 − 2 0

− 2 0 0

0 0

0 0 0 0 0 0 0 0 0 0

0 − 1 0

0 0 − 1

0 1 0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, 2ê3 ∧ e2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0

0 0

0 − 2 0

0 0

− 2 0 0

0 0 0 0 0 0 0 0 0 0

0 − 1 0

0 0 1

0 − 1 0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

2e1 ∧ e2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0

0 0

0 0

0 − 2 0

2 0 0

0 0 0 0 0 0 0 0 0 0

0 − 1 0

0 0 1

0 1 0

0 0 − 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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Next we describe the element 2D:

The generators of V = ℝ
3,2 are:

2D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 0

2 0

2 0

2 0

2 0

0 0 0 0 0 0 0 0 0 0

0 1

0 1

0 1

0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

ê1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 1

0

0

0

0

0 0 0 0 0 0 0 0 0 0

0

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, ê2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

− 1

0

0

0

0 0 0 0 0 0 0 0 0 0

0

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, ê3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

− 1

0

0

0 0 0 0 0 0 0 0 0 0

0

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

e1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

− 1

0

0 0 0 0 0 0 0 0 0 0

0

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, e2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

− 1

0 0 0 0 0 0 0 0 0 0

0

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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Finally we have the 4 basis elements of W2:

4 � Nomizu maps of homogeneous 3‑(˛,ı)‑Sasaki manifolds

4.1 � Nomizu map of the canonical connection

By the Nomizu theorem invariant connections on reductive homogeneous spaces M = G∕H 
are in bijective correspondence with isotropy equivariant maps Λ ∶ � ×� → � , where 
� is a reductive complement to the isotropy algebra � ⊂ � . For fundamental vector fields 
X, Y considered as elements in � this correspondence is given by Λ∇

X
Y = ∇X0

Y − [X, Y]0 , 
compare [15, Corollary 2.2, p.191]. By [15, Proposition X.2.3, p. 191] the torsion T∇ of the 
connection corresponding to Λ∇ is given by

For the following theorem we need a similar statement to Lemma 1.2.1 for two fundamen-
tal vector fields. Note that even in the case when X, Y ∈ � are horizontal in the origin they 
fail to be horizontal in other points. Yet we have

Lemma 4.1.1  Let G ↷ M act by automorphisms on a 3-(�, �)-Sasaki manifold M from the 
left, X, Y ∈ � with fundamental vector fields X̂, Ŷ ∈ �(M) . Then

Proof  Since G is a group of automorphisms we have LX̂𝜂i = 0 so

2E1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 − 2

0 − 2

0 − 2

0 2

0 2

0 0 0 0 0 0 0 0 0 0

− 1

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, 2E2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 2

0 − 2

0 2

0 2

0 2

0 0 0 0 0 0 0 0 0 0

0

− 1

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

2E3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 − 2

0 2

0 2

0 − 2

0 − 2

0 0 0 0 0 0 0 0 0 0

0

0

− 1

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, 2E4 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 2

0 2

0 − 2

0 2

0 − 2

0 0 0 0 0 0 0 0 0 0

0

0

0

− 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(15)T∇(X, Y) = Λ∇
X
Y − Λ∇

Y
X − [X, Y]�.

�[X, Y]V = −

3∑
i=1

(2𝛼Φi(X̂, Ŷ) + 2(𝛼 − 𝛿)𝜂j ∧ 𝜂k(X̂, Ŷ))𝜉i.
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Using [̂X, Y]V =
∑3

i=1
�i([̂X, Y])�i and (1) yields the result. 	�  ◻

Theorem  4.1.1  The Nomizu map for the canonical connection Λ∇ ∶ � ×� → � of a 
homogeneous 3-(�, �)-Sasaki manifold with � = V⊕H is given by

where ΛgN ∶ H ×H → H is the Nomizu map of the Levi-Civita connection on the homoge-
neous base of the canonical submersion.

Proof  We first prove that the torsion of Λ∇ given by (15) agrees with the canonical torsion

We begin with the case X, Y ∈ H . Evaluating Lemma 4.1.1 in the origin T0M ≅ � we 
obtain [X, Y]V = −2�

∑3

i=1
Φi(X, Y)�i . Thus,

as the torsion TgN = 0 of the Levi-Civita connection on the base vanishes. Suppose now 
that X = �i and Y ∈ H . Then

Finally if both X = �i, Y = �j ∈ V and (ijk) an even permutation of (123) we have

We further need to verify that Λ∇
X
∈ ��(�) for all X ∈ � , that is g(Λ∇

X
Y , Z) + g(Y ,Λ∇

X
Z) = 0 

for all Y , Z ∈ � . Suppose X ∈ H and Y , Z ∈ H . Then Λ∇
X
= Λ

gN
X

 and g|H = gN thus Λ∇
X
 is 

metric as ΛgN
X

 is. If Y ∈ V and Z ∈ H we find that Λ∇
X
Y = 0 by definition while Λ∇

X
Z ∈ H is 

orthogonal to Y. Analogously, if Y , Z ∈ V the Nomizu map Λ∇
X
 acts trivially on both sides. 

Now suppose X ∈ V . Then by [2, Corollary 2.3.1] X is Killing as a linear combination of 
the �i and thus the Lie derivative LX ∈ ��(�) . In particular, if Y , Z ∈ V then Λ∇

X
Y =

�

2�
LXY  

is metric. If Y ∈ H we have

d𝜂i(X̂, Ŷ) = X̂(𝜂i(Ŷ)) − Ŷ(𝜂i(X̂)) − 𝜂i([X̂, Ŷ])

= 𝜂i([X̂, Ŷ]) − 𝜂i([Ŷ , X̂]) − 𝜂i([X̂, Ŷ]) = 𝜂i([X̂, Ŷ]) = −𝜂i(
�[X, Y]).

Λ∇
X
Y =

⎧
⎪⎪⎨⎪⎪⎩

Λ
gN
X
Y X, Y ∈ H

�

2�
[X, Y] X, Y ∈ V

[X, Y] − 2�
∑3

i=1
�i(X)�iY X ∈ V,Y ∈ H

0 X ∈ H,Y ∈ V,

T∇ = 2�

3∑
i=1

�i ∧ ΦH

i
+ 2(� − 4�)�123.

Λ∇
X
Y − Λ∇

Y
X − [X, Y] = Λ

gN
X
Y − Λ

gN
Y
X − [X, Y]H − [X, Y]V

= TgN (X, Y) + 2�

3∑
i=1

Φi(X, Y)�i = 0 + 2�

3∑
i=1

Φi(X, Y)�i

= T∇(X, Y)

Λ∇
X
Y − Λ∇

Y
X − [X, Y] = [X, Y] − 2��iY − [X, Y] = −2��iY = T∇(X, Y).

Λ∇
X
Y − Λ∇

Y
X − [X, Y] =

�

2�
[X, Y] −

�

2�
[Y ,X] − [X, Y] =

(
2 −

4�

�
− 1

)
[�i, �j]

=
(
1 −

4�

�

)
2��k = T∇(X, Y).
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If Z ∈ H the right hand side is just −g(Y ,Λ∇
X
Z) by definition while for Z ∈ V

is perpendicular to Y. Hence, g(Λ∇
X
Y , Z) = 0 = −g(Y ,Λ∇

X
Z) . 	�  ◻

Remark 4.1.1  For symmetric spaces the Levi-Civita connection corresponds to the trivial 
Nomizu map ΛgN = 0 . The Nomizu map of the Alekseevsky base is given in [10, Lemma 
5, p. 35].

4.2 � Nomizu maps in the symmetric base case

In the case of a positive homogeneous 3-(�, �)-Sasaki manifold or its non-compact sibling 
the Nomizu map Λ∇ simplifies drastically.

Proposition 4.2.1  The canonical connection ∇ of a homogeneous 3-(�, �)-Sasaki manifold 
over a Wolf space or its non-compact dual corresponds to the map

Proof  In the case of a Riemannian symmetric space the Levi–Civita connection agrees 
with the Ambrose–Singer connection. Thus, ΛgN ≡ 0 . Now let X ∈ V and Y ∈ H . Then

It follows Λ∇
X
Y = (1 −

2�

�
)[X, Y] =

�

2�
[X, Y] . 	�  ◻

Remark 4.2.1  As noted in Remark 3.1.2 the homogeneous 3-(�, �)-Sasaki space is naturally 
reductive if and only if � = 0 . In this case the Ambrose-Singer connection is metric. In 
fact, Proposition 4.2.1 shows that in this case the canonical and Ambrose-Singer connec-
tions agree.

Proposition 4.2.2  The Levi–Civita connection corresponds to the map

Proof  Note that the correspondence is Λ∇
X
Y = ∇XY − [X, Y] , for 

X, Y ∈ � , and the canonical connection is given by ∇ = ∇g +
1

2
T  where 

the canonical torsion is given by (3), or equivalently (4). Thus we have 
Λ

g

X
Y = ∇

g

X
Y − [X, Y] = ∇XY − [X, Y] −

1

2
T(X, Y) = Λ∇

X
Y −

1

2
T(X, Y) . Again we look at 

each case individually. Let X, Y ∈ H . Then

g(Λ∇
X
Y , Z) = g(LXY − 2�

∑
�i(X)�iY , Z) = −g(Y , LXZ − 2�

∑
�i(X)�iZ).

LXZ − 2�
∑

�i(X)�iZ ∈ V

Λ∇
X
=

{
0, X ∈ H
�

2�
adX, X ∈ V.

2�

3∑
i=1

�i(X)�i|H =
2�

�

3∑
i=1

�i(X)ad �i =
2�

�
adX.

Λ
g

X
Y =

⎧⎪⎨⎪⎩

1

2
[X, Y]� X, Y ∈ V or X, Y ∈ H

(1 −
�

�
)[X, Y] X ∈ V,Y ∈ H

�

�
[X, Y] X ∈ H,Y ∈ V.
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where we have used that �(�,V) = 0 and [X, Y]� ∈ V = span{�1, �2, �3} . Thus

For vertical vectors X = �i, Y = �j , (ijk) an even permutation of (123), we find

and by linearity for arbitrary X, Y ∈ V . Let X ∈ V, Y ∈ H then

and thus

For the final expression X ∈ H,Y ∈ V use the above identity for T with X ↔ Y  . Then

	�  ◻

The Nomizu maps allow for a detailed investigation of homogeneous 3-(�, �)-Sasaki 
manifolds. A thorough discussion of curvature operators and properties will be carried out 
in an upcoming publication [3].
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1

2
T(X, Y) = �

3∑
i=1

Φi(X, Y)�i = �

3∑
i=1

g(X,�iY)�i

=
�

�

3∑
i=1

g(X, [�i, Y])�i =
�

8��2(n + 2)

3∑
i=1

�(X, [Y , �i])�i

=
1
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�([X, Y], �i)�i
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1

2

3∑
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1
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1

2
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Λ
g

�i
�j = Λ∇

�i
�j − (� − 4�)�123(�i, �j, ⋅) =

�

2�
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3∑
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�i ∧ ΦH

i
(X, Y , ⋅ ) = 2�
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i
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�
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