The in-process monitoring and real-time control of the penetration depth during laser welding is evaluated. An optical collimator collects the optical emission for measurement with a fast spectrometer. The sensor data are used to calculate the electron temperature and subsequently to determine the weld quality of overlap welds in AISI 304 stainless steel sheets performed both with CW Nd:YAG and CO2 lasers. A PI-controller adjusts the laser power aiming at a constant penetration depth and has been tested for Nd:YAG laser welding. Optical inspection of the weld verifies the results obtained with the proposed closed-loop system of spectroscopic sensor and controller. © 2011 Published by Elsevier Ltd.
Process control of stainless steel laser welding using an optical spectroscopic sensor
Sibillano T.;Rizzi D.;Ancona A.
2011-01-01
Abstract
The in-process monitoring and real-time control of the penetration depth during laser welding is evaluated. An optical collimator collects the optical emission for measurement with a fast spectrometer. The sensor data are used to calculate the electron temperature and subsequently to determine the weld quality of overlap welds in AISI 304 stainless steel sheets performed both with CW Nd:YAG and CO2 lasers. A PI-controller adjusts the laser power aiming at a constant penetration depth and has been tested for Nd:YAG laser welding. Optical inspection of the weld verifies the results obtained with the proposed closed-loop system of spectroscopic sensor and controller. © 2011 Published by Elsevier Ltd.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.