Knowledge available through Semantic Web standards can easily be missing, generally because of the adoption of the Open World Assumption (i.e. the truth value of an assertion is not necessarily known). However, the rich relational structure that characterizes ontologies can be exploited for handling such missing knowledge in an explicit way. We present a Statistical Relational Learning system designed for learning terminological naïve Bayesian classifiers, which estimate the probability that a generic individual belongs to the target concept given its membership to a set of Description Logic concepts. During the learning process, we consistently handle the lack of knowledge that may be introduced by the adoption of the Open World Assumption, depending on the varying nature of the missing knowledge itself.
Learning terminological Naïve Bayesian classifiers under different assumptions on missing knowledge
Minervini P.;D'Amato C.;Fanizzi N.
2011-01-01
Abstract
Knowledge available through Semantic Web standards can easily be missing, generally because of the adoption of the Open World Assumption (i.e. the truth value of an assertion is not necessarily known). However, the rich relational structure that characterizes ontologies can be exploited for handling such missing knowledge in an explicit way. We present a Statistical Relational Learning system designed for learning terminological naïve Bayesian classifiers, which estimate the probability that a generic individual belongs to the target concept given its membership to a set of Description Logic concepts. During the learning process, we consistently handle the lack of knowledge that may be introduced by the adoption of the Open World Assumption, depending on the varying nature of the missing knowledge itself.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.