There is little information about the role of red and blue light on leaf morphology and physiology in fruit trees, and more studies have been developed in herbaceous plants grown under controlled light conditions. The objective of this research was to evaluate the effect of red and blue screens on morpho-anatomy and gas exchange in apple leaves grown under ambient sunlight conditions. Apple trees cv. Fuji were covered by 40% red and blue nets, leaving trees with 20% white net as control. Light relations (photosynthetic photon flux density, PPFD; red to far-red light ratio, R/FR and blue to red light ratio, B/R), morpho-anatomical features of the leaf (palisade to spongy mesophyll ratio, P/S, and stomata density, SD) and leaf gas exchange (net photosynthesis rate, An; stomatal conductance, gs; transpiration rate, E; and intrinsic water use efficiency, IWUE) were evaluated. Red and blue nets reduced 27% PPFD, reducing by 20% SD and 25% P/S compared to control, but without negative effects on An and gs . Blue net increased gs 21%, leading to the highest E and lowest IWUE by increment of B/R light proportion. These findings demonstrate the potential use of red and blue nets for differential modulation of apple leaf gas exchange through sunlight management under field conditions.
Red and blue netting alters leaf morphological and physiological characteristics in apple trees
Losciale P.;
2021-01-01
Abstract
There is little information about the role of red and blue light on leaf morphology and physiology in fruit trees, and more studies have been developed in herbaceous plants grown under controlled light conditions. The objective of this research was to evaluate the effect of red and blue screens on morpho-anatomy and gas exchange in apple leaves grown under ambient sunlight conditions. Apple trees cv. Fuji were covered by 40% red and blue nets, leaving trees with 20% white net as control. Light relations (photosynthetic photon flux density, PPFD; red to far-red light ratio, R/FR and blue to red light ratio, B/R), morpho-anatomical features of the leaf (palisade to spongy mesophyll ratio, P/S, and stomata density, SD) and leaf gas exchange (net photosynthesis rate, An; stomatal conductance, gs; transpiration rate, E; and intrinsic water use efficiency, IWUE) were evaluated. Red and blue nets reduced 27% PPFD, reducing by 20% SD and 25% P/S compared to control, but without negative effects on An and gs . Blue net increased gs 21%, leading to the highest E and lowest IWUE by increment of B/R light proportion. These findings demonstrate the potential use of red and blue nets for differential modulation of apple leaf gas exchange through sunlight management under field conditions.File | Dimensione | Formato | |
---|---|---|---|
Bastias et al., 2021 plants-10-00127.pdf
accesso aperto
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
4.42 MB
Formato
Adobe PDF
|
4.42 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.