Sigma receptors (SRs) are recognized as valuable targets for the treatment of neurodegenerative disorders. A series of novel SRs ligands were designed by combining key pharmacophoric amines (i.e., benzylpiperidine or benzylpiperazine) with new 1,3-dithiolane-based heterocycles and their bioisosters. The new compounds exhibited a low nanomolar affinity for sigma-1 and sigma-2 receptors. Five selected compounds were evaluated for their neuroprotective capacity on SH-SY5Y neuroblastoma cell line. They were able to counteract the neurotoxicity induced by rotenone, oligomycin and NMDA. Competition studies with PB212, a S1R antagonist, confirmed the involvement of S1R in neuroprotection from the oxidative stress induced by rotenone. Electrophysiological experiments performed on cortical neurons in culture highlighted the compounds ability to reduce NMDA-evoked currents, suggesting a negative allosteric modulator activity toward the NMDA receptor. Altogether these results qualify our novel dithiolane derivatives as potential agents for fighting neurodegeneration.

Novel Dithiolane-Based Ligands Combining Sigma and NMDA Receptor Interactions as Potential Neuroprotective Agents

Denora N.;Iacobazzi R. M.;Brasili L.;
2020-01-01

Abstract

Sigma receptors (SRs) are recognized as valuable targets for the treatment of neurodegenerative disorders. A series of novel SRs ligands were designed by combining key pharmacophoric amines (i.e., benzylpiperidine or benzylpiperazine) with new 1,3-dithiolane-based heterocycles and their bioisosters. The new compounds exhibited a low nanomolar affinity for sigma-1 and sigma-2 receptors. Five selected compounds were evaluated for their neuroprotective capacity on SH-SY5Y neuroblastoma cell line. They were able to counteract the neurotoxicity induced by rotenone, oligomycin and NMDA. Competition studies with PB212, a S1R antagonist, confirmed the involvement of S1R in neuroprotection from the oxidative stress induced by rotenone. Electrophysiological experiments performed on cortical neurons in culture highlighted the compounds ability to reduce NMDA-evoked currents, suggesting a negative allosteric modulator activity toward the NMDA receptor. Altogether these results qualify our novel dithiolane derivatives as potential agents for fighting neurodegeneration.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/351498
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? ND
social impact