We prove the existence of solutions (λ,v)∈R×H1(Ω) of the elliptic problem {−Δv+(V(x)+λ)v=vp in Ω,v>0,∫Ωv2dx=ρ. Any v solving such problem (for some λ) is called a normalized solution, where the normalization is settled in L2(Ω). Here Ω is either the whole space RN or a bounded smooth domain of RN, in which case we assume V≡0 and homogeneous Dirichlet or Neumann boundary conditions. Moreover, [Formula presented] if N≥3 and p>1 if N=1,2. Normalized solutions appear in different contexts, such as the study of the Nonlinear Schrödinger equation, or that of quadratic ergodic Mean Field Games systems. We prove the existence of solutions concentrating at suitable points of Ω as the prescribed mass ρ is either small (when [Formula presented]) or large (when [Formula presented]).
Normalized concentrating solutions to nonlinear elliptic problems
Vaira G.;
2021-01-01
Abstract
We prove the existence of solutions (λ,v)∈R×H1(Ω) of the elliptic problem {−Δv+(V(x)+λ)v=vp in Ω,v>0,∫Ωv2dx=ρ. Any v solving such problem (for some λ) is called a normalized solution, where the normalization is settled in L2(Ω). Here Ω is either the whole space RN or a bounded smooth domain of RN, in which case we assume V≡0 and homogeneous Dirichlet or Neumann boundary conditions. Moreover, [Formula presented] if N≥3 and p>1 if N=1,2. Normalized solutions appear in different contexts, such as the study of the Nonlinear Schrödinger equation, or that of quadratic ergodic Mean Field Games systems. We prove the existence of solutions concentrating at suitable points of Ω as the prescribed mass ρ is either small (when [Formula presented]) or large (when [Formula presented]).File | Dimensione | Formato | |
---|---|---|---|
PPVV-JDE.pdf
accesso aperto
Tipologia:
Documento in Pre-print
Licenza:
Creative commons
Dimensione
505.21 kB
Formato
Adobe PDF
|
505.21 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.