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Abstract

We prove the existence of solutions (λ, v) ∈R × H 1(�) of the elliptic problem⎧⎪⎨
⎪⎩

−�v + (V (x) + λ)v = vp in �,

v > 0,

∫
�

v2 dx = ρ.

Any v solving such problem (for some λ) is called a normalized solution, where the normalization is settled 
in L2(�). Here � is either the whole space RN or a bounded smooth domain of RN , in which case we 
assume V ≡ 0 and homogeneous Dirichlet or Neumann boundary conditions. Moreover, 1 < p < N+2

N−2 if 
N ≥ 3 and p > 1 if N = 1, 2. Normalized solutions appear in different contexts, such as the study of the 
Nonlinear Schrödinger equation, or that of quadratic ergodic Mean Field Games systems. We prove the 
existence of solutions concentrating at suitable points of � as the prescribed mass ρ is either small (when 
p < 1 + 4

N
) or large (when p > 1 + 4

N
) or it approaches some critical threshold (when p = 1 + 4

N
).
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1. Introduction

Let � be a smooth open domain in RN , V : � → R and ρ > 0. We study the existence of 
solutions (λ, v) ∈R × H 1(�) of the elliptic problem

⎧⎪⎨
⎪⎩

−�v + (V (x) + λ)v = vp in �,

v > 0,

∫
�

v2 dx = ρ, (1.1)

where p ∈ (1,2∗ − 1). Here the usual critical Sobolev exponent is 2∗ = 2N/(N − 2) if N ≥ 3
and 2∗ = +∞ if N = 1, 2. In particular we will face two different cases: either � = RN , or �
is a bounded smooth domain; in the latter case, we will assume V ≡ 0 and associate with (1.1)
homogeneous Dirichlet or Neumann boundary conditions. Any v solving (1.1) (for some λ) is 
called a normalized solution, where the normalization is settled in L2(�).

1.1. Motivations

Normalized solutions to semilinear elliptic problems are investigated in different applied 
models. One main, well-established motivation comes from the study of solitary waves to time-
dependent nonlinear Schrödinger equations (NLSE). For concreteness, let us consider the fol-
lowing NLSE for the time dependent, complex valued wave function �:

i∂t� + �� − V (x)� + |�|p−1� = 0, x ∈ �, t ∈R. (1.2)

In this context, either � = RN , or � can be a bounded domain, in which case homogeneous 
Dirichlet boundary conditions are imposed, to approximate an infinite well potential (i.e. V (x) ≡
+∞ in RN \�). As it is well known [16], solutions to (1.2) conserve, at least formally, the energy 
E(�) and the mass Q(�), where

E(�) = 1

2

∫
�

|∇�|2 + 1

2

∫
�

V (x)|�|2 − 1

p + 1

∫
�

|�|p+1, Q(�) =
∫
�

|�|2.

Solitary wave solutions to (1.2) are obtained imposing the ansatz �(x, t) = eiλt v(x), where the 
real constant λ and the real valued function v satisfy

−�v + (V (x) + λ)v = |v|p−1v (1.3)

in �, with suitable boundary conditions. Now, two points of view can be adopted.
On the one hand, one can choose a fixed value of λ, searching for solutions v of (1.3). This can 

be done using either topological methods, such as fixed point theory or the Lyapunov-Schmidt 
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reduction, or variational ones, looking for critical points of the associated action functional 
J (v) = E(v) + λQ(v)/2. This point of view has been widely adopted in the last decades, the 
related literature is huge, and we do not even try to summarize it here.

On the other hand, one can consider also λ as part of the unknown. In this case it is quite 
natural to fix the value Q(v), so that one is led to consider normalized solutions. The variational 
framework to treat this problem consists in searching for critical points of the energy E, con-
strained to the Hilbert manifold Mρ = {v : Q(v) = ρ}. In this way, λ plays the role of a Lagrange 
multiplier. Notice that, in the simplest case � =RN , V ≡ 0, the problem

⎧⎪⎨
⎪⎩

−�v + λv = vp in RN ,

v > 0,

∫
�

v2 dx = ρ, (1.4)

can be completely solved by scaling, at least when dealing with positive v. More precisely, in the 
subcritical range 1 < p < 2∗ − 1, let us denote with U the unique radial solution (depending on 
p) to

−�U + U = Up, U ∈ H 1(RN), U > 0 in RN, (1.5)

having mass

2σ0 = 2σ0(p) :=
∫
RN

U2(x) dx > 0. (1.6)

It is well known that any positive solution in H 1(RN) of −�v + v = vp is a translated copy 
of U . Therefore we obtain that (λ, v) solves (1.4) if and only if

λ > 0, v(x) = λ
1

p−1 U(λ
1
2 x), ρ = λ

2
p−1 − N

2 · 2σ0.

As a consequence, (1.4) is solvable for every ρ whenever 2
p−1 − N

2 	= 0 (and the solution is 
unique up to translations). The complementary case corresponds to the so-called mass critical
(or L2-critical) exponent:

p = 1 + 4

N
=⇒ (1.4) is solvable iff ρ = 2σ0

(with infinitely many solutions, one for every λ > 0). As we will see, on a general ground, 
for the mass critical exponent the existence of normalized solutions becomes strongly unstable. 
Incidentally, the criticality of such exponent has repercussions also in other aspects of (1.2), 
related to dynamical issues (orbital stability, blow-up) also in connection with the exponents 
appearing in the Gagliardo-Nirenberg inequality, see [52,16].

When scaling is not allowed, the existence of normalized solutions becomes nontrivial, 
and many techniques developed for the case with fixed λ can not be directly adapted to this 
framework. Also for this reason, the literature concerning normalized solutions is far less 
broad: after the paper by Jeanjean [30] in 1997, concerning autonomous equations on RN with 
non-homogeneous nonlinearities, only recently an increasing number of papers deal with this 
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subject. Different lines of investigation include, for instance, NLS equations and systems on 
RN [5,7,13,8,11,6,12,24,9,44,45], on bounded domains [39,40,43,41] or on quantum graphs 
[1–3,22,42].

More recently, normalized solutions have been considered also in connection with Mean Field 
Games (MFG) theory, which has been introduced by seminal papers of Lasry and Lions [32–34]
and of Caines, Huang, Malhamé [29]. Such theory models the behavior of a large number of 
indistinguishable rational agents, each aiming at minimizing some common cost. In the ergodic 
case, when the cost is of long-time-average type, the distribution of the players becomes station-
ary in time. For our aims, we focus on ergodic MFG with quadratic Hamiltonian and power-type, 
aggregative interaction. The reason of this choice is that in this case, contrary to the general one, 
the MFG system can be reduced to (1.1) by a change of variable. In the setting we want to 
describe, the state of a typical agent is driven by the controlled stochastic differential equation

dXt = −atdt + √
2ν dBt ,

where at is the controlled velocity and Bt is a Brownian motion, with initial state provided by 
the random variable X0. The player chooses at in such a way to minimize the cost

J (X0, a) = lim inf
T →∞

1

T

T∫
0

E

[ |at |2
2

+ V (Xt ) − αmq(Xt )

]
dt,

where q > 0, V is a given potential and m(x) denotes the (observed) density of the players 
at x ∈ �. As time t → +∞, the distribution law of Xt converges to a measure having density 
μ = μ(x), independent of X0, and at Nash equilibria of the game the densities μ and m coincide. 
From the PDE viewpoint, such equilibria are described by the following elliptic system, which 
couples a Hamilton-Jacobi-Bellman equation for u and a Kolmogorov equation for m, which has 
to satisfy also a normalization in L1(�):

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−ν�u(x) + 1
2 |∇u(x)|2 = λ + V (x) − αmq(x) in �

−ν�m(x) − div(m(x)∇u(x)) = 0 in �∫
�

mdx = 1, m > 0.

(1.7)

Here the unknown λ gives, up to a change of sign, the average cost, ∇u provides an optimal 
control, and m is the stationary population density of agents playing with optimal strategy. As 
we mentioned, we deal with the aggregative case, i.e. α > 0: indeed, in such case, the individual 
cost J is decreasing with respect to m, and the agents are attracted to crowded regions [20,
23]. If we suppose that � is bounded, different boundary conditions can be chosen according 
to the action of the boundary: if ∂� acts as a reflecting barrier on the state Xt , then (1.7) is 
naturally complemented with Neumann boundary conditions [19]; on the other hand, in case 
of state constraint, Dirichlet conditions arise [31,15]. Alternatively, one can consider (1.7) on 
� = RN [17].

As we mentioned, the specific choice of the quadratic Hamiltonian H(p) = |p|2/2 allows to 
use the Hopf-Cole transformation [34] in order to reduce (1.7) to a single PDE. Indeed, defining
885
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v2(x) := α1/qm(x) = ce−u(x)/ν, (1.8)

for a suitable normalizing constant c, then v solves

⎧⎪⎨
⎪⎩

−2ν2�v + (V (x) + λ)v = v2q+1 in �,

v > 0,

∫
�

v2 dx = α1/q,

which reduces to (1.1) by choosing

ν = √
2/2, p = 2q + 1, ρ = α1/q . (1.9)

1.2. Main results

A common feature of the papers listed above, both in the NLS and in the MFG case, is that 
they use a variational approach: normalized solutions are found either as minimizers or as saddle 
points of a suitable energy (E in the NLS case) on the mass constraint. Up to our knowledge, only 
few results about normalized solutions exploit non-variational techniques: in particular, we refer 
to [21], where bifurcation techniques are applied to a quadratic multi-population MFG system.

In the present paper we propose a first approach to problem (1.1) based on the Lyapunov-
Schmidt reduction. Indeed, setting

ε := λ− 1
2 , u := ε

2
p−1 v, (1.10)

problem (1.1) turns to be equivalent to

⎧⎪⎨
⎪⎩

−ε2�u + (ε2V (x) + 1)u = up in �,

u > 0, ε
− 4

p−1

∫
�

u2 dx = ρ. (1.11)

We treat (1.11) as a singularly perturbed problem, looking for solutions (ε, u), with ε sufficiently 
small, via a Lyapunov-Schmidt reduction. By (1.10), these correspond to solutions (λ, v) of the 
original problem (1.1), with λ large. As a matter of fact, this strategy will work for selected 
ranges of ρ, depending on p.

As an important advantage of our approach we are able to describe the asymptotic profile of 
the solutions we find, in terms of the solution U ∈ H 1(RN) of problem (1.5). More precisely, we 
find solutions which are approximated by a suitable scaling of U , concentrated at suitable points.

Roughly speaking, we say that a family v = vρ of solutions of (1.1), indexed on ρ, concen-
trates at some point ξ0 ∈ � as ρ → ρ∗ ∈ [0, +∞] if

vρ(x) = ε
− 2

p−1
ρ U

(
x − ξρ

ερ

)
+ Rρ(x), (1.12)

where, as ρ → ρ∗, ερ → 0, ξρ → ξ0, and the remainder Rρ is a lower order term, in some 
suitable sense.

About the point of concentration ξ0, we deal with three different cases, namely:
886
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1. � bounded, V ≡ 0, Neumann boundary conditions, in which case ξ0 ∈ ∂� is a non-
degenerate critical point of the mean curvature of the boundary ∂�;

2. � bounded, V ≡ 0, either Dirichlet or Neumann boundary conditions, in which case ξ0 ∈ �

is the maximum point of the distance function from ∂�;
3. � = RN , in which case ξ0 ∈ RN is a non-degenerate critical point of V .

To illustrate the kind of results we obtain, we provide here a qualitative, incomplete statement 
concerning each case. Let us start with the boundary concentration case (1) which will be treated 
in Section 2.1 (for the complete results see Theorems 2.3, 2.5).

Theorem 1.1. Let us consider (1.1), with � bounded and V ≡ 0, associated with Neumann 
boundary conditions. Let ξ0 ∈ � be a non-degenerate critical point of the mean curvature H
of the boundary ∂�. There exists ρ0 = ρ0(p, �) > 0 such that:

• if 1 < p < 1 + 4

N
there exist solutions vρ for every ρ > ρ0, concentrating at ξ0 as ρ → +∞;

• if 1 + 4

N
< p < 2∗ − 1 there exist solutions vρ for every 0 < ρ < ρ0, concentrating at ξ0 as 

ρ → 0;

• if p = 1 + 4

N
, H(ξ0) 	= 0 and (2.12) holds true, there exist solutions vρ for every σ0 − ρ0 <

ρ < σ0 or σ0 < ρ < σ0 + ρ0 depending on the sign of the mean curvature at ξ0; in both 
cases, vρ concentrates at ξ0 as ρ → σ0 (σ0 being defined in (1.6)).

Theorem 1.1 can be immediately translated to the MFG system (1.7). Recalling (1.8), in this 
case the leading parameter is α and the concentration of the density mα is intended as

mα(x) = (αε2
α)

− 1
q U2

(
x − ξα

εα

)
+ Rα(x), (1.13)

where, again, as α → α∗ ∈ [0, +∞], we have that εα → 0, ξα → ξ0, and the remainder Rα is 
a lower order term, in some suitable sense. Notice that, since 

∫
�

mα dx = 1, as long as Rα is 

negligible, one obtains that (αε2
α)

− 1
q goes as ε−N

α , so that mα actually concentrates (this can be 
made precise, see e.g. Remark 2.4 ahead).

Corollary 1.2. Let us consider the MFG system (1.7), with ν = √
2/2, � bounded and V ≡ 0, 

associated with Neumann boundary conditions. Let ξ0 ∈ � be a non-degenerate critical point of 
the mean curvature H of the boundary ∂�. There exists α0 = α0(p, �) > 0 such that:

• if 0 < q <
2

N
there exist solutions mα for every α > α0, concentrating at ξ0 as α → +∞;

• if 
2

N
< q <

2∗ − 2

2
there exist solutions mα for every 0 < α < α0, concentrating at ξ0 as 

α → 0;

• if q = 2

N
, H(ξ0) 	= 0 and (2.12) holds true, there exist solutions mα either for every σq

0 −
α0 < α < σ

q

0 or σq

0 < α < σ
q

0 + α0, depending on the sign of the mean curvature at ξ0; in 
both cases, mα concentrates at ξ0 as α → σ

q .
0
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Since (1.7) with α > 0 entails an aggregative interaction between the players, concentrating 
solutions are somehow expected. In [17], concentrating solutions were obtained for more gen-
eral, non-quadratic MFG, in the mass subcritical case, by variational methods. Our results are 
reminiscent of those obtained in [20, Thm. 1.1].

Let us state our results concerning the interior concentration case (2) which will be treated in 
Section 2.2 (see Theorems 2.12, 2.14).

Theorem 1.3. Let us consider (1.1), with � bounded and V ≡ 0, associated with either homoge-
neous Dirichlet boundary conditions or Neumann ones. Let ξ0 ∈ � be the maximum point of the 
distance function from the ∂�. There exists ρ0 = ρ0(p, �) > 0 such that:

• if 1 < p < 1 + 4

N
there exist solutions vρ for every ρ > ρ0, concentrating at ξ0 as ρ → +∞;

• if 1 + 4

N
< p < 2∗ − 1 there exist solutions vρ for every 0 < ρ < ρ0, concentrating at ξ0 as 

ρ → 0;

• if p = 1 + 4

N
, there exist solutions vρ for every 2σ0 − ρ0 < ρ < 2σ0 in the Dirichlet case, 

and for every 2σ0 < ρ < 2σ0 + ρ0 in the Neumann one; in both cases, vρ concentrates at ξ0
as ρ → 2σ0.

Corollary 1.4. Let us consider the MFG system (1.7), with ν = √
2/2, � bounded and V ≡ 0, 

associated with homogeneous Dirichlet boundary conditions or Neumann ones. Let ξ0 ∈ � be 
the maximum point of the distance function from the ∂�. There exists α0 = α0(p, �) > 0 such 
that:

• if 0 < q <
2

N
there exist solutions mα for every α > α0, concentrating at ξ0 as α → +∞;

• if 
2

N
< q <

2∗ − 2

2
there exist solutions mα for every 0 < α < α0, concentrating at ξ0 as 

α → 0;

• if q = 2

N
, there exist solutions mα for every (2σ0)

q −α0 < α < (2σ0)
q in the Dirichlet case, 

and for every (2σ0)
q < α < (2σ0)

q +α0 in the Neumann one; in both cases, mα concentrates 
at ξ0 as α → (2σ0)

q .

Finally, we state our results concerning the last case (3) which will be treated in Section 3 (see 
Theorems 3.2, 3.4).

Theorem 1.5. Let us consider (1.1), with � =RN . Let ξ0 ∈ � be a non-degenerate critical point 
of the potential V . There exists ρ0 = ρ0(p, V ) > 0 such that:

• if 1 < p < 1 + 4

N
there exist solutions vρ for every ρ > ρ0, concentrating at ξ0 as ρ → +∞;

• if 1 + 4

N
< p < 2∗ − 1 there exist solutions vρ for every 0 < ρ < ρ0, concentrating at ξ0 as 

ρ → 0;

• if p = 1 + 4

N
, �V (ξ0) 	= 0 and (3.12) holds true, then there exist solutions vρ for every 

2σ0 −ρ0 < ρ < 2σ0 or 2σ0 < ρ < 2σ0 +ρ0 depending on the sign of �V (ξ0); in both cases, 
vρ concentrates at ξ0 as ρ → σ0.
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Again, a natural counterpart of the above result can be written in the setting of MFG systems 
with potentials on RN .

As we mentioned, the proof of our results consists in rephrasing problem (1.1) into the 
singularly perturbed problem (1.11) whose solutions can be found via the well known Lyapunov-
Schmidt procedure. We shall omit many details on this procedure because they can be found, up 
to some minor modifications, in the literature. We only compute what cannot be deduced from 
known results.

When p 	= 1 + 4
N

our results provide an almost complete picture, just assuming the non-
degeneracy of a critical point ξ0. Indeed, under this assumption we can produce solutions con-
centrating at ξ0, provided either the mass is large, in the sub-critical regime, or small in the 
super-critical one; moreover, we can also exhibit exact asymptotics both for the concentration 
parameter ερ and for the remainder Rρ in equation (1.12).

On the other hand, the study of the critical regime, i.e. p = 1 + 4
N

, needs new delicate estimates 
of the error term whose proof requires a lot of technicalities. This affects different aspects. First, 
we can construct concentrating solutions only when the mass is close to the threshold value σ0
(defined in (1.6)); however this appears as a natural obstruction that has already been observed 
in the literature (see [39,43]). What is more relevant is that we can prove our result without any 
further assumption only in the case of interior concentration (see Theorem 1.3), while we need 
additional hypotheses both in cases (1) and (3) (see Theorems 1.1, 1.5). As a matter of fact, in 
these latter situations we assume that the mean curvature of the boundary or the Laplacian of 
the potential V cannot vanish at the concentration point ξ0; furthermore, we also suppose (2.12), 
or (3.12) which appear difficult to be checked as they concern global information involving not 
explicit solutions to linear problems (see (2.8) and (3.11)). Actually, we succeeded in verifying 
(3.12) only in the one dimensional case (see Remark 3.5), but we think that they hold in every 
dimension and it would be extremely interesting to provide a proof for them.

The critical case p = 1 + 4
N

also presents important difficulties in the determination of the 
exact asymptotic of ερ and the remainder term Rρ : we can give this kind of precise information, 
as in the sub- and super-critical regime, only in case (2) and for N = 1 (see Remark 2.16).

Concerning the interval of allowed L2 masses in the critical case, let us notice that the exis-
tence of solutions concentrating at ξ0 is established when the mass approaches the critical values 
σ0 or 2σ0 (see (1.6)) either from below or from above. We strongly believe that our results are 
sharp, in the class of single-peak concentrating solutions. Let us make our claim more precise 
with a couple of examples. In Theorem 1.3 when � is a ball we prove that the Dirichlet prob-
lem and the Neumann problem have a solution concentrating at the origin provided the mass 
approaches 2σ0 from below and from above, respectively. We conjecture that these solutions do 
not exist when the mass approaches 2σ0 from above or from below, respectively (actually, in the 
Dirichlet case, this is known to be true in the class of positive solutions, see [39, Thm. 1.5]). 
Theorem 1.5 in the 1−dimensional case (see also Remark 3.5) states the existence of a solu-
tion, concentrating at a non-degenerate minimum or maximum point of the potential V when 
the mass approaches 2σ0 from below or from above, respectively. Again we strongly believe that 
these kinds of solutions do not exist when the mass approaches 2σ0 from above or from below, 
respectively.

As our interest in this article focuses in the existence of normalized concentrating solutions, 
we have considered only the simplest case of concentration; however, using similar ideas, it 
should be possible to build solutions concentrating at multiple points; in the critical case, this 
should provide multi-peak solutions having mass which approaches integer multiples of the crit-
ical value 2σ0 (σ0 in the case of boundary concentration).
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However, single-peak solutions are more interesting when looking for orbitally stable stand-
ing waves of NLSE. Indeed, in this research line, a key information relies on proving that the 
Morse index of the normalized solution is 1. Actually, we are able to provide this information in 
dependence of the Morse index of the point ξ0 itself, as pointed out in Remarks 2.7, 2.17 and 3.6.

Finally, in this paper we always consider Sobolev sub-critical powers. The case p = 2∗ − 1
with boundary conditions has been recently studied in [41] and we believe that our approach, 
together with results obtained by Adimurthi and Mancini in [4], could be used to tackle boundary 
concentration for the Neumann problem. In particular, this should be possible at non-degenerate 
critical points of the mean curvature, having positive mean curvature. On the other hand, global 
or local Pohozaev’s identities imply non-existence of solutions of (1.11), for ε small, for the 
Dirichlet problem on star-shaped domains [14] and for the Schrödinger equation for suitable 
potentials [18].

The paper is organized as follows. Section 2 is devoted to study the problem on bounded do-
mains. In particular in Section 2.1 we build solutions concentrating at suitable boundary points 
for the Neumann problem, while in Section 2.2 we build solutions concentrating at the most 
centered point of the domain for both Neumann and Dirichlet problems. The Schrödinger equa-
tion defined in the whole space is studied in Section 3, where solutions concentrating at suitable 
critical points of the potential V are constructed.

2. The problem on a bounded domain

In this section we consider Problem (1.11) in a bounded domain � in RN , with either Neu-
mann or Dirichlet boundary conditions.

2.1. Boundary concentration

In this subsection we will study Problem (1.11) in a bounded domain � with homogeneous 
Neumann boundary conditions, focusing our attention on the existence of solutions concentrating 
at some point on the boundary of �. Our Theorems will rely on some well known results due to 
Li [36] and Wei [46] concerning the existence of solutions to the following singularly perturbed 
Neumann problem

⎧⎪⎨
⎪⎩

−ε2�u + u = up in �,

u > 0 in �,

∂νu = 0 on ∂�

(2.1)

as ε is small enough.
We will only consider the case N ≥ 2, because when N = 1 solutions concentrating on the 
boundary point of an interval can be found by reflection as solutions concentrating on an interior 
point as we will show in the next section.

For future convenience, let us introduce some notations. Given a point ξ0 ∈ ∂�, without loss 
of generality we can assume that ξ0 = 0 and xN = 0 is the tangent plane of ∂� at ξ0 and ν(ξ0) =
(0, 0, . . . , −1). We also assume that ∂� is given by xN = ψ(x′) where ψ is a real and smooth 

function defined in 
{
x′ ∈RN−1 : |x′| < η

}
for some η > 0 such that
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ψ(x′) := 1

2

N−1∑
j=1

κjx
2
j + O(|x′|3) if |x′| < η. (2.2)

Here κj = κj (ξ0) are the principal curvatures and H(ξ0) = 1
N−1

∑N−1
j=1 κj (ξ0) is the mean cur-

vature at the boundary point ξ0.
We will denote with U the H 1(RN) solution to (1.5), enjoying the following properties

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

U(x) = U(|x|) ∀ x ∈ RN

U ′(r) < 0 ∀ r > 0, U ′′(0) > 0

lim
r→+∞ r

N−1
2 erU(r) = c > 0; lim

r→+∞
U ′(r)
U(r)

= −1.

(2.3)

The following statement collects the facts, that we will use, concerning the existence of con-
centrating solutions for Problem (2.1).

Theorem 2.1 ([36,46]). Let ξ0 ∈ ∂� be a non-degenerate critical point of the mean curvature of 
the boundary ∂�. Then there exists ε0 > 0 such that for any ε ∈ (0, ε0) there exists a solution uε

to (2.1) which concentrates at the point ξ0 as ε → 0. More precisely

uε(x) = U

(
x − ξε

ε

)
+ εVξ0

(
x − ξε

ε

)
+ ψε(x) (2.4)

where ξε ∈ ∂� and

ξε − ξ0

ε
→ 0 as ε → 0, (2.5)

the reimander term ψε satisfies

‖ψε‖H 1
ε (�) :=

⎡
⎣∫

�

(
ε2|∇ψε|2 + ψ2

ε

)
dx

⎤
⎦1/2

= O
(
εmin{2,p}+ N

2

)
. (2.6)

The function Vξ0 ∈ H 1(RN) solves the linear problem

⎧⎪⎪⎨
⎪⎪⎩

− �Vξ0 + Vξ0 − pUp−1Vξ0 = 0 in RN+ ,

∂Vξ0

∂yN

(y′,0) = 1

2

U ′(|y′|,0)

|y′|
N−1∑
i=1

κi(ξ0)y
2
i = 1

2

N−1∑
i=1

κi(ξ0)
∂U

∂yi

(y′,0)yi on ∂RN+
(2.7)

and it is given by

Vξ0(y) = 1

2

N−1∑
κi(ξ0)

(
∂U

∂yi

(y)yiyN + Wi(y)

)

i=1
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where Wi solves⎧⎪⎨
⎪⎩

− �Wi + Wi − pUp−1Wi = 2 (yN∂iiU + yi∂iNU) in RN+ ,

∂Wi

∂yN

(y′,0) = 0 on ∂RN+ .
(2.8)

Remark 2.2. Note that, using the invariance by symmetry of �, it is immediate to check that

Wi(y1, . . . , yi, . . . , yN) = W1(yi, . . . , y1, . . . , yN).

Now, let us consider the Neumann problem with prescribed L2−norm

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−ε2�u + u = up in �,

u > 0 in �,

∂νu = 0 on ∂�

ε
− 4

p−1
∫
�

u2 = ρ.

(2.9)

Our first result concerns the existence of a solution of Problem (2.9) in the sub- and super-critical 
regime.

Theorem 2.3. Let ξ0 ∈ ∂� be a non-degenerate critical point of the mean curvature of the bound-
ary ∂�. Suppose that p 	= 4

N
+ 1 and take σ0 as in (1.6). The following conclusions hold

(i) If p < 4
N

+ 1 there exists R > 0 such that for any ρ > R Problem (2.9) has a solution 

(�ρ, uρ) for ε := (
�ρρ

) (p−1)
(p−1)N−4 , with �ρ → 1

σ0
and uρ concentrating at the point ξ0 as 

ρ → ∞.
(ii) If p > 4

N
+1 there exists r > 0 such that for any ρ < r Problem (2.9) has a solution (�ρ, uρ)

for ε := (
�ρρ

) (p−1)
(p−1)N−4 , with �ρ → 1

σ0
and uρ concentrating at the point ξ0 as ρ → 0.

Proof. In order to apply Theorem 2.1 we have to reduce the existence of solutions to Problem 
(2.9) with variable but prescribed L2−norm to the existence of solutions to Problem (2.1) where 
the parameter ε is small. Let us choose

ε
− 4

p−1 +N = �ρ with � = �(ρ) ∈
[

1

2σ0
,

2

σ0

]
(2.10)

is to be chosen later and where σ0 is defined in (1.6). Note that ε → 0 if and only if either 
p < 4

N
+ 1 and ρ → ∞ or p > 4

N
+ 1 and ρ → 0.

Theorem 2.1 implies that for any � as in (2.10), there exists either R > 0 or r > 0 such that 
for any ρ > R or ρ < r problem (2.1) has a solution uε as in (2.4) such that ε satisfies (2.10). 
Now, we have to choose the free parameter � = �(ρ) such that the L2−norm of the solution 

is the prescribed value. Set φε(x) := εVξ0

(
x−ξε

ε

)
+ ψε(x). By (2.6) and (2.7) we immediately 

deduce that
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⎛
⎝∫

�

φ2
ε (x)dx

⎞
⎠

1
2

= O
(
ε

N
2 +1

)
.

Then, taking into account (2.10), we get

ε
− 4

p−1

∫
�

u2
ε(x)dx = ε

− 4
p−1

∫
�

(
U

(
x − ξε

ε

)
+ φε(x)

)2

dx

= ε
− 4

p−1

⎡
⎣∫

�

U2
(

x − ξε

ε

)
dx +

∫
�

2U

(
x − ξε

ε

)
φε(x)dx + o(ε)

⎤
⎦

= ε
− 4

p−1 +N

⎡
⎢⎢⎣
∫

�−ξε
ε

U2 (y) dy +O(ε)

⎤
⎥⎥⎦

= ε
− 4

p−1 +N [σ0 +O(ε)] = ρ [�(ρ)σ0 +O(ε)] (2.11)

where the term O(ε) is uniform with respect to � = �(ρ) when either ρ → +∞ or ρ → 0.
Finally, we choose �(ρ) as in (2.10), when either ρ → +∞ or ρ → 0, such that

�(ρ)σ0 + o(1) = 1

and by (2.11) we deduce that uε has the prescribed L2−norm concluding the proof. �
Remark 2.4. The explicit relation ρ = �−1

ρ ε
N− 4

p−1 , provided by the above theorem, can be 
easily translated in terms of the parameters appearing in the MFG system (1.9). We obtain

α = ρ
p−1

2 = �
− p−1

2
ρ εN

p−1
2 −2 and (αε2

α)
− 1

q = �ρε−N,

where �ρ → σ−1
0 as ε → 0. In particular, the leading term in the r.h.s. of (1.13) is actually 

concentrating.

In the critical case, namely when p = 4
N

+ 1 the situation is more difficult and we can prove 
the following result.

Theorem 2.5. Let p = 1 + 4
N

and ξ0 ∈ ∂� be a non-degenerate critical point of the mean curva-
ture of the boundary ∂� such that H(ξ0) 	= 0. Suppose that

n :=
∫

RN−1

|y′|2U2 (y′,0
)
dy′ − (N − 1)

∫
RN

U(y)W1(y)dy 	= 0 (2.12)
+
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where W1 is defined in (2.8). Then, there exists δ > 0 such that if either nH(ξ0) > 0 and ρ ∈
(σ0 − δ, σ0) or nH(ξ0) < 0 and ρ ∈ (σ0, σ0 + δ) (see (1.6)), Problem (2.9) with ε := �ρ |ρ − σ0|
has a solution (�ρ, uρ) such that �ρ → 1

|H(ξ0)n| and uρ concentrates at the point ξ0 as ρ → σ0.

Proof. In this case, let us fix

ε = �δ where δ := |ρ − σ0| and � = �(δ) ∈
[

1

2|H(ξ0)n| ,
2

|H(ξ0)n|
]

, (2.13)

where n is defined in (2.12). As in the proof of Theorem 2.3 we have to choose the free parameter 
� = �(δ) such that the L2−norm of the solution is the prescribed value ρ. But, differently from 
the case p 	= 1 + 4

N
, here, we need a more refined profile of the solution uε, namely we have to 

take into account the first order εVξ0

(
x−ξε

ε

)
of the reimander term (see (2.4)). Indeed, by (2.4)

and (2.6) we get

ε
− 4

p−1

∫
�

u2
ε(x)dx =

∫
�−ξε

ε

U2 (y) dy + 2ε

∫
�−ξε

ε

U (y)Vξ0(y)dy +O
(
εmin{2,p})

(2.14)

where the term O
(
εmin{2,p}) is uniform with respect to � = �(δ).

In order to compute the expansion of the right hand side of (2.14) let us define

B+ :=
{
x ∈RN+ : |x| < η

}
and � := {

(x′, xN) : 0 < xN < ψ(x′) : |x′| < η
}

where the function ψ given in (2.2). Rescaling x = εy + ξε one sends B+ and � to B+
ε :={

y ∈ RN+ : |y + 1
ε
ξε| < η

ε

}
and

�ε :=
{
(y′, yN) : −1

ε
ξεN < yN <

1

ε
ψ
(
εy′ + ξ ′

ε

)− 1

ε
ξεN , |y′ + 1

ε
ξ ′
ε| <

η

ε

}
⊂ � − ξε

ε
.

Estimating the first term on the right hand side of (2.14) and using the decay properties of U (see 
(2.3)) one obtains∫

�−ξε
ε

U2 (y) dy =
∫

B+
ε

U2 (y) dy −
∫
�ε

U2 (y) dy +
∫

�−ξε
ε

\B+
ε

U2 (y) dy

=
∫
RN+

U2 (y) dy −
∫
�ε

U2 (y) dy +O

⎛
⎜⎝ ∫
RN\B+

ε

U2 (y) dy

⎞
⎟⎠

= σ0 − 1

2
H(ξ0)ε

∫
RN−1

|y′|2U2 (y′,0
)
dy′ + o (ε) .

(2.15)

Indeed, (2.2), standard computations together with the fact that ξε

ε
= o(1) (as ε → 0 (see (2.5)

with ξ0 = 0) show that
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∫
�ε

U2 (y) dy =
∫

{
|y′+ 1

ε
ξ ′
ε |< η

ε

} dy′
1
ε
ψ
(
εy′+ξ ′

ε

)− 1
ε
ξεN∫

− 1
ε
ξεN

U2 (y′, yN

)
dyN

=
∫

{
|y′+ 1

ε
ξ ′
ε |< η

ε

}
1

ε
ψ
(
εy′ + ξ ′

ε

)
U2 (y′,0

)
dy′ + o (ε)

= 1

2
H(ξ0)ε

∫
RN−1

|y′|2U2 (y′,0
)
dy′ + o (ε) .

With respect to the second term on the right hand side of (2.14), we have

2
∫

�−ξε
ε

U (y)Vξ0(y)dy =2
∫
RN+

U (y)Vξ0(y)dy + o(1)

=
N−1∑
i=1

κi(ξ0)

∫
RN+

U (y)

(
∂U

∂yi

(y)yiyN + Wi(y)

)
dy + o(1)

= − 1

2
H(ξ0)

∫
RN−1

U2(y′,0)|y′|2dy′

+
N−1∑
i=1

κi(ξ0)

∫
RN+

U(y)W1(y)dy + o(1),

(2.16)

since

∫
RN+

U (y)
∂U

∂yi

(y)yiyNdy =
∫
RN+

U (y)
∂U

∂yN

(y)y2
i dy = 1

2

∫
RN+

∂U2

∂yN

(y)y2
i dy

= 1

2

∫
RN+

∂

∂yN

(
U2(y)y2

i

)
dy = −1

2

∫
RN−1

U2(y′,0)y2
i dy′

= − 1

2(N − 1)

∫
RN−1

U2(y′,0)|y′|2dy′.

Combining (2.14), (2.15) and (2.16) together with (2.12) and the choice of ε in (2.13), we get

ε
− 4

p−1

∫
�

u2
ε(x)dx = σ0 − H(ξ0)nε + o (ε) = σ0 − H(ξ0)n�δ + o (δ)

= ρ ± δ − H(ξ )n�δ + o (δ)

(2.17)
0
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where the term o(·) is uniform with respect to � = �(δ).
Finally, it is clear that it is possible to choose �(δ) as in (2.10), when δ → 0, such that

1 − H(ξ0)n�(δ) + o (1) = 0 or − 1 − H(ξ0)n�(δ) + o (1) = 0

(in particular H(ξ0)n > 0 in the first case and H(ξ0)n < 0 in the second case) and by (2.17) we 
deduce that uε has the prescribed L2−norm. That concludes the proof. �
Remark 2.6. We point out that (i) and (ii) of Theorem 2.3 hold true when ξ0 is a C1−stable criti-
cal point of the mean curvature according the definition given by Li in [36]. The non-degeneracy 
assumption is used in proving Theorem 2.5, since it ensures the estimate (2.5) which turns to be 
crucial in the second order expansion of the L2−norm of the solution.
It is useful to recall that Micheletti and Pistoia in [37] proved that for generic domains � the 
mean curvature of the boundary is a Morse function, i.e. all its critical points are non-degenerate.

Remark 2.7. We point out that if ξ0 is a non-degenerate critical point of the mean curvature 
of the boundary whose index Morse is m(ξ0) then by Theorem 4.6 in [10] we deduce that the 
solution concentrating at a ξ0 is non-degenerate and has Morse index 1 +m(ξ0). In particular, the 
solution concentrating at a non-degenerate minimum point of the mean curvature of the boundary 
is non-degenerate and has Morse index 1.

2.2. Interior concentration

In this subsection we will find normalized solutions concentrating at an interior point of the 
bounded domain �. Our analysis is based on well known results proved by Gui, Ni and Wei in 
[28,38,48,47,50], concerning the existence of solutions to the following Dirichlet and Neumann 
problem ⎧⎪⎨

⎪⎩
−ε2�u + u = up in �,

u > 0 in �,

u = 0 or ∂νu = 0 on ∂�

(2.18)

as ε is small enough.
In order to summarize the aforementioned results, let us first state the following proposition (see 
Lemma 4.3 and 4.4 in [38] and Section 3 in [51]).

Proposition 2.8. Let Uε,ξ (x) := U
(

x−ξ
ε

)
for x, ξ ∈ � and let ϕε,ξ be the solution to the problem

{
−ε2�ϕε,ξ + ϕε,ξ = 0 in �,

ϕε,ξ = Uε,ξ or ∂νϕε,ξ = ∂νUε,ξ on ∂�.
(2.19)

Set

ψε(ξ) := −ε ln
(
ϕε,ξ (ξ)

)
in case of Dirichlet boundary conditions

or
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ψε(ξ) := −ε ln
(−ϕε,ξ (ξ)

)
in case of Neumann boundary conditions.

Then

lim
ε→0

ψε(ξ) = 2d∂�(ξ) uniformly in �,

where d∂�(ξ) := dist(ξ, ∂�).

Now, we can state the existence result (see Lemma 2.1 of [26])

Theorem 2.9. Let ξ0 ∈ � be the maximum point of the distance function from the boundary 
∂�. There exists ε0 > 0 such that for any ε ∈ (0, ε0) there exists a solution uε to (2.18) which 
concentrates at the point ξ0 as ε → 0. More precisely,

uε(x) = U

(
x − ξε

ε

)
− ϕε,ξε (x) + φε,ξε (x) (2.20)

where

ξε → ξ0 as ε → 0 with d∂�(ξ0) = max
ξ∈�

d∂�(ξ) (2.21)

and

‖φε,ξε‖H 1
ε (�) :=

⎛
⎝∫

�

(
ε2|∇φε,ξε |2 + φ2

ε,ξε

)
dx

⎞
⎠1/2

= O
(
ε

N
2 |ϕε,ξε (ξε)|min{1,p/2}) . (2.22)

From the above result we obtain the asymptotic behavior of φε,ξε in dependence on ϕε,ξ , 
whereas the following Lemma gives an analogous first information on ϕε,ξ ; note that differently 
from the case of boundary concentration, here ϕε,ξ decays exponentially as ε → 0.

Lemma 2.10. For any δ > 0 there exist ε0 > 0, η > 0 and C > 0 such that for any ε ∈ (0, ε0)

and ξ ∈ � such that d∂�(ξ) ≥ δ it holds true

‖ϕε,ξ‖L∞(�) ≤ Ce− d∂�(ξ)

ε .

Proof. Arguing as in Section 7 of [51] and taking into account Remark 2.11, we immediately 
deduce

|ϕε,ξ (x)| ≤ C

∫
∂�

e− |z−ξ |+|z−x|
ε |z − ξ |− N−1

2 |z − x|− N−1
2

〈
z − x

|z − x| , ν
〉
dz

≤ Ce− d∂�(ξ)

ε (d∂�(ξ))−
N−1

2

∫
∂�

|z − x|− N−1
2 dz.

(2.23)

Then, in order to conclude the proof it is enough to show that
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∥∥∥∥∥∥
∫
∂�

|z − x|− N−1
2 dz

∥∥∥∥∥∥
L∞(�)

≤ C. (2.24)

Let δ > 0 be fixed and small enough so that for any x ∈ � such that d∂�(x) ≤ δ there exists a 
unique πx ∈ ∂� such that |πx − x| = d∂�(x). Now it is clear that

∫
∂�

|z − x|− N−1
2 dz ≤ δ− N−1

2 |∂�| for any x ∈ � such that d∂�(x) ≥ δ.

Let us consider the case d∂�(x) ≤ δ. By the choice of δ, we can write x = πx +d∂�(x)νπx , where 
νπx denotes the inward normal at the boundary point πx . We remark that, since ∂� is C2, there 
exists a constant L such that

|〈z − w,νz〉| ≤ L|z − w|2 for any z,w ∈ ∂�,

and this implies

|z − x|2 = |z − πx − d∂�(x)νπx |2 = |z − πx |2 + d2
∂�(x) − 2d∂�(x)〈z − πx, νπx 〉

≥ |z − πx |2 (1 − 2Ld∂�(x)) + d2
∂�(x) ≥ |z − πx |2 (1 − 2Lδ) ≥ 1

2
|z − πx |2

choosing δ so that 1 − 2Lδ > 1/2. Therefore, it is immediate to check that there exists C > 0
such that ∫

∂�

|z − x|− N−1
2 dz ≤ 2− N−1

2

∫
∂�

|z − πx |− N−1
2 dz ≤ C, ∀x ∈ � : d∂�(x) ≤ δ.

That concludes the proof of (2.24). �
In the above lemma we have used the following representation formula for ϕε,ξ(x).

Remark 2.11. Let Gε(·, P), P ∈ �, the Green’s function of −ε2� + 1 in � with Dirichlet or 
Neumann boundary condition. Let G̃ε(·, P), the Green’s function of −� +1 in the scaled domain 
�ε := �/ε with Dirichlet or Neumann boundary condition. We claim that

Gε(x,P ) = 1

εn
G̃ε (x/ε,P )

Indeed by changing variable εy = x we get

∫
�

(
−ε2�xGε(x,P ) + Gε(x,P )

)
dx =

∫
�/ε

(
−�yG̃ε(y,P ) + G̃ε(y,P )

)
dy = 1.

Therefore, formulas (7.4) in [51] and (9.2) in [48] have to be corrected as follows
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ϕε,P (x) = ± (cN + o(1))

∫
∂�

e− |z−P |+|z−x|
ε |z − P |− N−1

2 |z − x|− N−1
2

〈z − x, ν〉
|z − x| dz,

where the sign + is taken in the Dirichlet case and the sign – in the Neumann case.

We are now in the position to tackle both the Dirichlet and Neumann problems with prescribed 
L2−norm ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−ε2�u + u = up in �,

u > 0 in �,

u = 0 or ∂νu = 0 on ∂�,

ε
− 4

p−1
∫
�

u2 = ρ.

(2.25)

Theorem 2.12. Let ξ0 ∈ � be the maximum point of the distance function from the ∂�.

(i) If p < 4
N

+ 1 there exists R > 0 such that for any ρ > R Problem (2.25) has a solution 

(�ρ, uρ) for ε := (
�ρρ

) (p−1)
(p−1)N−4 with �ρ → 1

2σ0
and uρ concentrating at the point ξ0 as 

ρ → ∞.
(ii) If p > 4

N
+ 1 there exists r > 0 such that for any ρ < r Problem (2.25) has a solution 

(�ρ, uρ) for ε := (
�ρρ

) (p−1)
(p−1)N−4 with �ρ → 1

2σ0
and uρ concentrating at the point ξ0 as 

ρ → 0.

Proof. We want to reduce the existence of solutions to problem (2.25) with variable but pre-
scribed L2−norm to the existence of solutions to problem (2.18) where the parameter ε is small. 
Let us choose

ε
− 4

p−1 +N = �ρ with � = �(ρ) ∈
[

1

4σ0
,

1

σ0

]
(2.26)

where σ0 is defined in (1.6). It is clear that ε → 0 if and only if either p < 4
N

+ 1 and ρ → ∞ or 
p > 4

N
+ 1 and ρ → 0.

By Theorem 2.9 we deduce that for any � as in (2.26), there exists either R > 0 or r > 0
such that for any ρ > R or ρ < r problem (2.1) has a solution uε as in (2.20) such that ε satisfies 
(2.26). Now, we have to choose the free parameter � = �(ρ) such that the L2−norm of the 
solution is ρ. Lemma 2.10 and (2.22) yield

ε
− 4

p−1

∫
�

u2
ε(x)dx =ε

− 4
p−1

∫
�

(
U

(
x − ξε

ε

)
− ϕε,ξε (x) + φε,ξε (x)

)2

dx

=ε
− 4

p−1

⎡
⎣∫

�

U2
(

x − ξε

ε

)
dx − 2

∫
�

ϕε,ξε (x)U

(
x − ξε

ε

)
dx

+
∫

ϕ2
ε,ξε

(x)dx
�
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+2
∫
�

(
U

(
x − ξε

ε

)
− ϕε,ξε (x)

)
φε,ξε (x)dx +

∫
�

φ2
ε,ξε

(x)dx

⎤
⎦

=ε
− 4

p−1 +N

⎡
⎢⎣ ∫
RN

U2 (y) dy + o(1)

⎤
⎥⎦

=ρ [2�(ρ)σ0 + o(1)]

where the last equality comes from (2.26). Finally, it is clear that it is possible to choose �(ρ) as 
in (2.26), when either ρ → +∞ or ρ → 0, such that

2�(ρ)σ0 + o(1) = 1

which is immediately satisfied for �(ρ) = 1
2σ0

+ o(1). Then uε has the prescribed L2−norm and 
the proof is completed. �
Remark 2.13. We point out that the existence result Theorem 2.9 holds true when ξ0 is a stable 
critical point of the distance function from the boundary as pointed out by Grossi and Pistoia in 
[26]. Therefore, also (i) and (ii) of Theorem 2.12 holds true in this more general situation.

2.2.1. The critical case
Let us consider the critical case p = 4

N
+ 1. This is in general quite difficult to deal with. We 

will prove the following result.

Theorem 2.14. Let p = 1 + 4
N

, σ0 be defined as in (1.6), and ξ0 ∈ � be the maximum point of 
the distance function from the ∂�.

(i) In the case of Dirichlet boundary conditions, there exists 0 < r < 2σ0 such that for any 
r < ρ < 2σ0 Problem (2.25) has a solution (ερ, uρ) such that ερ → 0 and uρ concentrates 
at the point ξ0 as ρ → 2σ−

0 .
(ii) In the case of Neumann boundary conditions, there exists R > 2σ0 such that for any 2σ0 <

ρ < R Problem (2.25) has a solution (ερ, uρ) such that ερ → 0 and uρ concentrates at the 
point ξ0 as ρ → 2σ+

0 .

Notice that in this result we only know that ερ = o(1) as ρ → 2σ0, and we can provide the 
exact asymptotics only in dimension N = 1, see Remark 2.16 ahead.
In the proof of the above result we will need a deeper comprehension on the asymptotical behav-
ior of ϕε,ξε . Following [38,48,47,50], set

Vε,ξ (y) := ϕε,ξ (εy + ξ)

ϕε,ξ (ξ)
, y ∈ �ε,ξ := � − ξ

ε
.

Then for any sequence εn → 0 there exists a subsequence εnk such that

Vεn ,ξ → Vξ uniformly on compact sets of RN ,

k
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where

Vξ (y) =
∫
∂�

e
〈 ζ−ξ
|ζ−ξ | ,y〉

dμξ (ζ ) (2.27)

where dμξ is a bounded Borel measure on ∂� with 
∫

∂�

dμξ (ζ ) = 1 and supp
(
dμξ

)⊂ {ζ ∈ ∂� :
|ζ − ξ | = d∂�(ξ)}. Moreover for any η > 0 it holds true

sup
y∈�εnk,ξ

e−(1+η)|y| ∣∣Vεnk,ξ (y) − Vξ (y)
∣∣→ 0 as εnk → 0.

Lemma 2.15. Let p = 1 + 4
N

and define

�ε :=
∫

�−ξε
ε

ϕε,ξε (εy + ξε)U (y) dy. (2.28)

Then, �ε = o(1) as ε → 0 and it holds

ϕε,ξε (ξε) = o (�ε) . (2.29)

Proof. First, applying Lemma 2.10 one gets that �ε = o(1). For any R > 0

�ε

ϕε,ξε (ξε)
=

∫
�−ξε

ε

Vε,ξε (y)U (y)dy ≥
∫

B(ξε,R)

Vε,ξε (y)U (y)dy

and by (2.27) we get

lim inf
ε→0

�ε

ϕε,ξε (ξε)
≥

∫
B(ξ,R)

U(y)dy

∫
∂�

e
〈 ζ−ξ
|ζ−ξ | ,y〉

dμξ (ζ )

and letting R → +∞ we immediately get (2.29) since

lim
ε→0

1

ϕε,ξε (ξε)

∫
�−ξε

ε

ϕε,ξε (εy + ξε)U (y)dy = +∞,

because the function

y → U(y)

∫
∂�

e
〈 ζ−ξ
|ζ−ξ | ,y〉

dμξ (ζ ) /∈ L1(R).

This concludes the proof. �
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As a consequence of Lemma 2.15 we will get that the leading term of the L2−norm of the 
solution is

ε
− 4

p−1

∫
�

u2
ε(x)dx ∼ 2σ0 − 2�ε.

In general it is difficult to find the exact rate of �ε in terms of ε and this is why we cannot choose 
the parameter ε in terms of the prescribed norm ρ as in Theorem 2.5 and Theorem 3.2-(iii).
We are now in the position to give the proof of Theorem 2.14.

Proof of Theorem 2.14. Taking into account (2.20) and (2.28) we get

ε
− 4

p−1

∫
�

u2
ε(x)dx =

∫
RN

U2 (y) dy −
∫

RN\ �−ξε
ε

U2 (y) dy − 2�ε + ε−N

∫
�

ϕ2
ε,ξε

(x)dx

+ 2ε−N

∫
�

U

(
x − ξε

ε

)
φε,ξε (x) − 2ε−N

∫
�

ϕε,ξε (x)φε,ξε (x)dx

+ ε−N

∫
�

φ2
ε,ξε

(x)dx.

(2.30)

Let us estimate all the right-hand side terms of this formula. First of all, taking into account the 
size of the error (2.22), we get

ε−N

∫
�

φ2
ε,ξε

(x)dx = O
(
|ϕε,ξε (ξε)|min{2,p})= o

(|ϕε,ξε (ξε)|
)
. (2.31)

In addition, recalling that U is the solution of (1.5), we obtain that the function Uε(x) :=
U
(

x−ξε

ε

)
satisfies

∫
RN\�

(
ε2|∇Uε|2 + U2

ε

)
dx =

∫
RN\�

Up+1
ε dx + ε2

∫
∂�

∂νUεUεdz

so that

∫
RN\ �−ξε

ε

U2 (y) dy = ε−N

∫
RN\�

U2
(

x − ξε

ε

)
dx ≤ ε−N

∫
RN\�

Up+1
(

x − ξε

ε

)
dx+

+ ε2−N

∫
∂�

U

(
z − ξε

ε

)
1

ε
U ′
(

z − ξε

ε

) 〈z − ξε, ν〉
|z − ξε| dz

= O
(|ϕ (ξ )|) .
ε,ξε ε
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Let us explain why the last equality holds. From (2.21) we deduce that for ε sufficiently small 
B(ξε, d∂�(ξε) ⊂ �; then (2.3) yields

ε−N

∫
RN\�

Up+1
(

x − ξε

ε

)
dx ≤ ε−N

∫
RN\B(ξε,d∂�(ξε)

Up+1
(

x − ξε

ε

)
dx

= O
(

ε(p+1) N−1
2 −Ne−(p+1)

d∂�(ξε)

ε

)
= o

(|ϕε,ξε (ξε)|
)
.

Moreover, from (2.21) we get that |z−ξε |
ε

→ +∞ for every z ∈ ∂�, so that from (2.3) and using 
the expression of ϕε,ξε given in Remark 2.11 we get

ε2−N

∣∣∣∣∣∣
∫
∂�

U

(
z − ξε

ε

)
1

ε
U ′
(

z − ξε

ε

) 〈z − ξε, ν〉
|z − ξε| dz

∣∣∣∣∣∣
= ε1−N

∣∣∣∣∣∣
∫
∂�

e− 2|z−ξε |
ε

∣∣∣∣z − ξε

ε

∣∣∣∣−(N−1) 〈z − ξε, ν〉
|z − ξε| (c+ o(1))dz

∣∣∣∣∣∣
= O

(|ϕε,ξε (ξε)|
)
.

Using these asymptotical information and taking into account (2.31), (2.30) becomes

ε
− 4

p−1

∫
�

u2
ε(x)dx =2σ0 − 2�ε + ε−N

∫
�

ϕ2
ε,ξε

(x)dx − 2ε−N

∫
�

ϕε,ξε (x)φε,ξε (x)dx

+ 2ε−N

∫
�

U

(
x − ξε

ε

)
φε,ξε (x) +O

(|ϕε,ξε (ξε)|
)
.

(2.32)

Let us now study the last three integral terms on the right hand side. One has

ε−N

∫
�

U

(
x − ξε

ε

)
φε,ξε (x)dx = O

⎛
⎜⎝
⎛
⎝ε−N

∫
�

φ2
ε,ξε

(x)dx

⎞
⎠1/2

⎞
⎟⎠

= O
(
|ϕε,ξε (ξε)|min{1,p/2})= O

(|ϕε,ξε (ξε)|
) (2.33)

if p ≥ 2, i.e. in low dimension N = 1, 2, 3, 4. In higher dimension the estimate is quite delicate 
and we need to use some careful estimates of the error term φε,ξε proved by Ni-Wei in [38] (see 
page 752) in the Dirichlet case and by Wei in [48] (see page 871) in the Neumann case. More 
precisely, it is proved that if μ < 1 is close enough to 1 and fixed then∣∣∣∣φε,ξε (εy + ξε)

∣∣∣∣≤ Ceμ|y| for any y ∈ � − ξε (2.34)

ϕε,ξε (ξε) ε
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where the constant C does not depend on ε when ε is small enough. Therefore, from (2.3) and 
(2.34) it follows

ε−N

∫
�

U

(
x − ξε

ε

)
φε,ξε (x)dx =

∫
�−ξε

ε

U (y)φε,ξε (εy + ξε)dy

= ϕε,ξε (ξε)

∫
�−ξε

ε

U (y)
φε,ξε (εy + ξε)

ϕε,ξε (ξε)
dy

= O
(|ϕε,ξε (ξε)|

)
.

Using these information in (2.32), we obtain

ε
− 4

p−1

∫
�

u2
ε(x)dx =2σ0 − 2�ε + ε−N

∫
�

ϕ2
ε,ξε

(x)dx − 2ε−N

∫
�

ϕε,ξε (x)φε,ξε (x)dx

+O
(|ϕε,ξε (ξε)|

)
.

(2.35)

The study of the last two terms is quite delicate. First of all, taking into account that ϕε,ξε

solves (2.19), we get

ε2
∫
�

|∇ϕ|2dx +
∫
�

ϕ2dx = ε2
∫
∂�

∂νϕ(z)ϕ(z)dz,

which implies

∫
�

ϕ2dx ≤ ε2
∫
∂�

∂νϕ(z)ϕ(z)dz.

Now, let us remind that on the boundary ∂� we have in the Dirichlet case

ϕ(z) = U

(
z − ξε

ε

)

and by Lemma 8.1 in [48]

∂νϕ(z) = 1

ε
U

(
z − ξε

ε

) 〈z − ξε, ν〉
|z − ξε| (1 +O(ε))

whereas, in the Neumann case

∂νϕ(z) = 1

ε
U ′
(

z − ξε

ε

) 〈z − ξε, ν〉
|z − ξε| ,

and by Lemma 8.2 in [48]
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ϕ(z) = −U

(
z − ξε

ε

)
(1 +O(ε)) .

Then using (2.3) and taking into account Remark 2.11 we get

ε−N

∫
�

ϕ2
ε,ξε

(x)dx = ε2−N

∫
∂�

1

ε
e− 2|z−ξε |

ε

∣∣∣∣z − ξε

ε

∣∣∣∣−(N−1)

(c+ o(1))(1 + O(ε))
〈z − ξε, ν〉
|z − ξε| dz

= O
(|ϕε,ξε (ξε)|

)
. (2.36)

Then, applying Cauchy-Schwarz inequality and recalling (2.22), one deduces that

ε−N

∫
�

ϕε,ξεφε,ξε ≤ ε−N/2‖ϕε,ξε‖2|ϕε,ξε (ξε)|min{1,p/2} = O(|ϕε,ξε (ξε)| 1
2 )|ϕε,ξε (ξε)|min{1,p/2}

= o(|ϕε,ξε (ξε)|).
Using this last estimate, together with (2.36), in (2.35) we obtain

ε
− 4

p−1

∫
�

u2
ε(x)dx = 2σ0 − 2�ε +O

(|ϕε,ξε (ξε)|
)
.

In order to conclude the proof it is enough to apply Lemma 2.15, and to recall that ϕε,ξε (and thus 
�ε) is positive (resp. negative) in the case of Dirichlet (resp. Neumann) boundary conditions (see 
Proposition 2.8). �
Remark 2.16. Let us consider the case N = 1. Without loss of generality, we can assume � =
(−1, 1). A straightforward computation shows that in the Dirichlet case

ϕε,0(x) = U
( 1

ε

)
cosh x

ε

cosh 1
ε

(2.37)

and in the Neumann case

ϕε,0(x) = U ′ ( 1
ε

)
cosh x

ε

sinh 1
ε

. (2.38)

This is because ϕ = ϕε,0 solves

−ε2ϕ′′ + ϕ = 0 in (−1,1)

with boundary condition

ϕ(1) = ϕ(−1) = U (1/ε) in the Dirichlet case

or
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ϕ′(1) = 1

ε
U ′ (1/ε) , ϕ′(−1) = −1

ε
U ′ (1/ε) in the Neumann case.

Here U is explicitly given by U(x) = 31/4(cosh 2x)−1/2. In particular

ϕε,0(0) ∼ ±23/231/4e−2/ε.

Moreover we have

�ε := −2

1
ε∫

− 1
ε

ϕε,0(εy)U (y) dy ∼

⎧⎪⎪⎨
⎪⎪⎩

−31/48
1

ε
e− 2

ε in the Dirichlet case

+31/48
1

ε
e− 2

ε in the Neumann case,

because

1
ε∫

− 1
ε

cosh(y)(cosh 2y)−1/2dy = √
2 log

(√
2 sinhy +

√
2 sinh2 y + 1

)∣∣∣y=1/ε

y=0
∼ √

2
1

ε
.

Finally, the leading term is

�ε = −2

1
ε∫

− 1
ε

ϕε,0(εy)U (y)dy ∼

⎧⎪⎪⎨
⎪⎪⎩

−31/48
1

ε
e− 2

ε in the Dirichlet case,

+31/48
1

ε
e− 2

ε in the Neumann case.

Remark 2.17. Let us assume that ξ0 ∈ � is a non-degenerate peak point (see Definition 
(1.4)–(1.5) in [50]) of the distance function from ∂�, i.e. there exists a ∈ RN such that

∫
∂�

e〈z−ξ0,a〉(z − ξ0)dμξ0 = 0

and the matrix

G(ξ0) :=
⎛
⎝∫

∂�

e〈z−ξ0,a〉(z − ξ0)i(z − ξ0)j dμξ0

⎞
⎠

i,j=1,...,N

is non-singular.

In particular, all its eigenvalues are strictly positive. We remark that if � is a ball then its center 
is a non-degenerate peak point. Combining results in [49,50], we get that if ε is small enough 
the (unique) solution to the Dirichlet or the Neumann problem which concentrates at ξ0 is non-
degenerate and its Morse index is equal to 1 in the Dirichlet case (Theorem 6.2 in [49]) and is 
equal to 1 + N in the Neumann case (see Theorem 1.3 in [50]).
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3. The Schrödinger equation

In this section we will tackle problem (1.1) for � = RN .
First of all let us solve the singularly perturbed Schrödinger equation

−ε2�u +
(
ε2V (x) + 1

)
u = up in RN, u > 0 in RN. (3.1)

For sake of simplicity we will assume V, |∇V | ∈ L∞(RN) and, given a non-degenerate critical 
point ξ0 of V , we suppose that in a neighborhood of ξ0 the following expansion holds true:

V (x) =
N∑

i=1

ai (x − ξ0)
2 +O

(
|x − ξ0|3

)
, where ai 	= 0. (3.2)

The following result can be easily proved by a Lyapunov-Schmidt procedure combining the 
ideas of Li [35], Grossi [25] and Grossi and Pistoia [26]. A sketch of the proof is given in the 
Appendix.

Proposition 3.1. Let ξ0 be a non-degenerate critical point of V . There exists ε0 > 0 such that 
for any ε ∈ (0, ε0) there exists a solution uε to (3.1) which concentrate at the point ξ0 as ε → 0. 
More precisely,

uε(x) = U

(
x − ξε

ε

)
− ε4Wξ0

(
x − ξε

ε

)
+ φε(x) (3.3)

where

ξε → ξ0 as ε → 0, (3.4)

the function Wξ0 ∈ H 1(RN) solves the linear problem

−�Wξ0 + Wξ0 − pUp−1Wξ0 =
N∑

i=1

aiy
2
i U(y) in RN (3.5)

and the remainder term φε satisfies

‖φε‖H 1
ε (RN) :=

⎛
⎜⎝∫
RN

(
ε2|∇φε|2 + φ2

ε

)
dx

⎞
⎟⎠

1/2

= O
(
ε

N
2 +4+η

)
for some η > 0. (3.6)

Next, we consider the Schrödinger equation with prescribed L2−norm⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−ε2�u + (
ε2V (x) + 1

)
u = up in RN,

u > 0 in RN,

ε
− 4

p−1
∫
N

u2 = ρ.

(3.7)
R
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We will first give an existence result in the non-critical case.

Theorem 3.2. Let ξ0 ∈RN be a non-degenerate critical point of V . Suppose that p 	= 4
N

+ 1 and 
take σ0 as in (1.6). The following conclusions hold

(i) If p < 4
N

+ 1 there exists R > 0 such that for any ρ > R problem (2.9) has a solution 

(uρ, �ρ) for ε := (
�ρρ

) (p−1)
(p−1)N−4 with �ρ → 1

2σ0
and uρ concentrating at the point ξ0 as 

ρ → ∞.
(ii) If p > 4

N
+1 there exists r > 0 such that for any ρ < r problem (2.9) has a solution (uρ, �ρ)

for ε := (
�ρρ

) (p−1)
(p−1)N−4 with �ρ → 1

2σ0
and uρ concentrating at the point ξ0 as ρ → 0.

Proof. Following the same argument of the previous sections we reduce the existence of so-
lutions to problem (3.7) with variable but prescribed L2−norm to the existence of solutions to 
problem (3.1) where the parameter ε is small. Let us choose

ε
− 4

p−1 +N = �ρ with � = �(ρ) ∈
[

1

2σ0
,

2

2σ0

]
(3.8)

where σ0 is defined in (1.6). It is clear that ε → 0 if and only if either p < 4
N

+ 1 and ρ → ∞
or p > 4

N
+ 1 and ρ → 0. By Proposition 3.1 we deduce that for any � as in (2.10), there exists 

either R > 0 or r > 0 such that for any ρ > R or ρ < r problem (3.1) has a solution uε as in (3.3)
such that ε satisfies (3.8). Now, we have to choose the free parameter � = �(ρ) such that the 
L2−norm of the solution is the prescribed value. By (3.6) we deduce

ε
− 4

p−1

∫
RN

u2
ε(x)dx = ε

− 4
p−1

∫
RN

(
U

(
x − ξε

ε

)
− ε4Wξ0

(
x − ξε

ε

)
+ φε(x)

)2

dx

= ε
− 4

p−1 +N

⎡
⎢⎣∫
RN

U2 (y) dy +O(ε4)

⎤
⎥⎦

= ε
− 4

p−1 +N
[
2σ0 +O(ε4)

]
= ρ�(ρ)

[
2σ0 +O(ε4)

]
,

(3.9)

where the term O(ε4) is uniform with respect to � = �(ρ) when either ρ → +∞ or ρ → 0 and 
the last equality comes from (3.8).

Finally, it is clear that it is possible to choose �(ρ) satisfying (3.8), when either ρ → +∞ or 
ρ → 0, such that � = 1

2σ0
+ o(1), implying that uε has the prescribed L2−norm. That concludes 

the proof. �
The result in the mass critical case requires an extra assumption. Before stating it, it is useful 

to point out the following fact.
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Remark 3.3. Let us point out that Wξ0 can be written as

Wξ0(y) =
N∑

i=1

aiWi(y), (3.10)

where each Wi solves

−�Wi + Wi − pUp−1Wi = y2
i U(y).

If W1 denotes the solution to

−�W1 + W1 − pUp−1W1 = y2
1U(y),

it is clear that

Wi(y1, . . . , yi, . . . , yN) := W1(yi, . . . , y1, . . . , yN).

Therefore

∫
RN

Wξ0(y)U(y)dy =
N∑

i=1

ai

∫
RN

Wi(y)U(y)dy

= 1

N

N∑
i=1

ai

∫
RN

(W1(y) + · · · + WN(y))︸ ︷︷ ︸
:=W(y)

U(y)dy

= 2
N∑

i=1

ai

1

2N

∫
RN

W(y)U(y)dy

︸ ︷︷ ︸
:=m

= m�V (ξ0),

where W solves

−�W + W − pUp−1W = |y|2U(y) in RN. (3.11)

Theorem 3.4. Let p = 4
N

+ 1, σ0 as in (1.6) and ξ0 ∈ RN be a non-degenerate critical point of 
V such that �V (ξ0) 	= 0. Assume

m := 1

2N

∫
RN

U(y)W (y)dy 	= 0 (3.12)

where W is defined in (3.11). There exists δ > 0 such that if either m�V (ξ0) > 0 and ρ ∈
(2σ0 − δ,2σ0) or m�V (ξ0) < 0 and ρ ∈ (2σ0,2σ0 + δ) problem (3.7) with ε4 := �ρ |ρ − 2σ0|
has a solution (uρ, �ρ) such that �ρ → 1

|m�V (ξ0)| and uρ concentrates at the point ξ0 as ρ →
2σ0.
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Proof. In this case, we need a more refined profile of the solution uε, namely the first order 
expansion Wξ0 given in (3.5) of the remainder term (see also Remark (3.3)). Let us choose

ε4 = �δ where δ := |ρ − 2σ0| and � = �(δ) ∈
[

1

2m�V (ξ0)
,

2

m�V (ξ0)

]
. (3.13)

Now, we have to choose the free parameter � = �(δ) such that the L2−norm of the solution 
is the prescribed value. Equation (3.9) becomes

ε
− 4

p−1

∫
RN

u2
ε(x)dx = 2σ0 − 2ε4m�V (ξ0) +O

(
ε4+η

)

= ρ ± δ − 2δ�(δ)m�V (ξ0) + o (δ) ,

(3.14)

where the term o(·) is uniform with respect to � = �(δ) and where the last equality comes from 
(3.13).

In order to conclude the proof it is enough to choose �(δ) satisfying (3.13), for δ → 0, such 
that

δ (1 +m�V (ξ0)�(δ) + o (1)) = 0, or δ (−1 +m�V (ξ0)�(δ) + o (1)) = 0

(in particular m�V (ξ0) < 0 in the first case and m�V (ξ0) > 0 in the second case) and by (3.14)
we deduce that uε has the prescribed L2−norm. That concludes the proof. �

In the following remark we prove that m > 0 and so (3.12) is true when N = 1 as proved. We 
conjecture that this is true in any dimension.

Remark 3.5. If N = 1 then m > 0. In particular, assumption (3.12) holds true and

(i) if ξ0 is a non-degenerate minimum point of V then mV ′′(ξ0) > 0
(ii) if ξ0 is a non-degenerate maximum point of V then mV ′′(ξ0) < 0.

First of all, we remark that when N = 1, U is explicitly given by U(x) = 31/4(cosh 2x)−1/2. 
Moreover, Wξ0 = V ′′(ξ0)W , where W ∈ H 1(R) solves

−W ′′ + W − pUp−1W = y2U(y) in R. (3.15)

We look for an even solution to (3.15) of the form W(r) = c(r)U ′(r) and we take into account 
that U ′ solves −(U ′)′′ + U ′ − pUp−1U ′ = 0 to obtain that c(r) has to satisfy the equation

−c′′U ′ − 2c′U ′′ = r2U if r > 0.

Multiplying by U ′, we get

−
(
c′(U ′(r))2

)′ = 1
r2(U2(r))′
2
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yielding

c′(r)(U ′(r))2 − c′(t)(U ′(t))2 =
t∫

r

1

2
s2(U2(s))′ds > 0 for 0 < r < t < ∞.

Notice that r → r2(U2(r))′ is an L2(R)−function and so r → c′(r)(U ′(r))2 is an H 1(R)−func-
tion, which implies that c′(t)(U ′(t))2 → 0 as t → ∞. Then, we get

c′(r) = 1

2(U ′(r))2

∞∫
r

s2(U2(s))′ds if r > 0.

In order to compute lim
r→+∞c′(r) we notice that we are in the position to apply de L’Hopital rule 

and we obtain

lim
r→+∞ c′(r) = lim

r→+∞
−r2U(r)U ′(r)

2U ′U ′′ = lim
r→+∞

−r2U(r)

2U ′′(r)
= −∞ as lim

r→+∞
U(r)

U ′′(r)
= 1.

The previous computation also yields

lim
r→+∞

c′(r)
− r2

2

= 1.

In addition, since U ′(r)/r → U ′′(0) 	= 0 as r → 0+,

lim
r→0+ rc′(r) = 1

2
lim

r→0+
r2

[U ′(r)]2

+∞∫
0

s2U(s)U ′(s)ds = −∞.

This immediately implies that

lim
r→0+ c(r) = +∞,

and (again using de L’Hopital rule)

lim
r→0+ W(r) = lim

r→0+ c(r)U ′(r) = lim
r→0+

c(r)

1
U ′(r)

= lim
r→0+

1
[U ′(r)]2

∫ +∞
r

s2U(s)U ′(s)ds

− U ′′(r)
[U ′(r)]2

= lim
r→0+

∫ +∞
r

s2U(s)U ′(s)ds

−U ′′(r)
=
∫ +∞

0 s2U(s)U ′(s)ds

−U ′′(0)
= −31/4G

4
= −0.301...,

where G is the Catalan constant:
911



B. Pellacci, A. Pistoia, G. Vaira et al. Journal of Differential Equations 275 (2021) 882–919
G = 1

2

+∞∫
0

t

cosh t
dt = 0.916... .

The above consideration implies that W is the unique solution of the following Cauchy problem

⎧⎪⎨
⎪⎩

−W ′′ + (1 − pUp−1)W = r2U

W(0) = − 31/4

4 G

W ′(0) = 0.

Since c is monotone, we deduce that W has exactly one zero r0, and it is possible to show that 
0 < r0 < 1. As a consequence

+∞∫
0

U(r)W(r)dr >

2∫
0

U(r)W(r)dr ≈ 0.253688... > 0

(by continuous dependence, the above integral can be numerically estimated at any level of ac-
curacy).

Remark 3.6. We point out that if ξ0 is a non-degenerate critical point of the potential V whose 
Morse index is m(ξ0) then by Corollary 1.2 in [27] we deduce that the solution concentrating at 
a ξ0 is non-degenerate and has Morse index 1 + m(ξ0). In particular, the solution concentrating 
at a non-degenerate minimum point of V is non-degenerate and has Morse index 1.

4. Appendix

Let us briefly sketch the proof of Proposition 3.1. Let us introduce some notations. Let 
H 1(RN) be equipped with the usual scalar product and norm

〈u,v〉 =
∫
RN

(∇u∇v + uv)dx and ‖u‖ =
⎛
⎜⎝∫
RN

(|∇u|2 + u2)dx

⎞
⎟⎠

1/2

.

We know that the embedding H 1(RN) ↪→ L2(RN) is continuous. Let i∗ : L2(RN) → H 1(RN)

be the adjoint defined by

u = i∗(f ) if and only if u ∈ H 1(RN) solves − �u + u = f in RN.

We point out that

‖i∗(f )‖ ≤ ‖f ‖L2(RN) for any f ∈ L2(RN). (4.1)

Now, let us remark that if ξ ∈ RN and v(x) := u(εx + ξ) then u solves equation (3.1) if and only 
if v solves the equation
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−�v +
(
ε2V (εx + ξ) + 1

)
v = vp in RN, v > 0 in RN,

which can be rewritten as

v = i∗(f (v) − ε2Vε,τ v), where f (v) := (v+)p and Vε,τ (x) := V (εx + ε2τ + ξ0), (4.2)

where we choose the point ξ as

ξ = ε2τ + ξ0 with τ ∈RN. (4.3)

Let us look for a solution to (4.2) of the form

v(x) = Z(x) + φ(x), where Z(x) := U(x) − ε4Wξ0(x), (4.4)

U is the radial solution to (1.5) and Wξ0 ∈ K⊥ is an exponentially decaying solution to the linear 
problem

−�Wξ0 + Wξ0 − pUp−1Wξ0 = Hξ0 , Hξ0(y) :=
N∑

i=1

aiy
2
i U(y) in RN

and φ is a remainder term which belongs to the space

K⊥ :=
{
φ ∈ H 1(RN) : 〈φ, ∂iU 〉 = 0, i = 1, . . . ,N

}
,

which is orthogonal, with respect to the H 1(RN) norm, to the N−dimensional space

K := span {∂1U, . . . , ∂NU},

formed by the solutions to the linear equation

−�ψ + ψ − pUp−1ψ = 0 in RN.

Problem (4.2) can be rewritten as

φ − i∗
{[

f ′(Z) − ε2Vε,τ

]
φ
}

︸ ︷︷ ︸
:=Lε,τ (φ)

= i∗
{
f (Z + φ) − f (Z) − f ′(Z)φ

}︸ ︷︷ ︸
:=Nε,τ (φ)

+i∗
{
f (Z) − ε2Vε,τZ

}
− Z︸ ︷︷ ︸

:=Eε,τ

.

(4.5)

Let us denote by � : H 1(RN) → K and �⊥ : H 1(RN) → K⊥ the orthogonal projections. 
Then, problem (4.5) turns out to be equivalent to the system

�⊥ {Lε,τ (φ) −Nε,τ (φ) − Eε,τ

}= 0 (4.6)
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and

�
{
Lε,τ (φ) −Nε,τ (φ) − Eε,τ

}= 0. (4.7)

First, for ε small and for any ξ ∈RN we will find a solution φ = φε,τ ∈ K⊥ to (4.6). We recall 
that we are assuming, for the sake of simplicity, that V and |∇V | are L∞(RN) function.

Proposition 4.1. For any compact set T ⊂ RN there exists ε0 > 0 and C > 0 such that for any 
ε ∈ (0, ε0) and for any τ ∈ T there exists a unique φ = φε,τ ∈ K⊥ which solves equation (4.6)
and

‖φε,τ‖ ≤ Cε5.

Proof. Let us sketch the main steps of the proof.

(i) First of all, we prove that the linear operator Lε,τ is uniformly invertible in K⊥, namely 
there exists ε0 > 0 and C > 0 such that

‖Lε,τ (φ)‖ ≥ C‖φ‖ for any ε ∈ (0, ε0), τ ∈ T and φ ∈ K⊥.

We can argue as in [25,26].
(ii) Next, we compute the size of the error Eε,τ in terms of ε. More precisely, we show that there 

exists ε0 > 0 and C > 0 such that

‖Eε,τ‖ ≤ Cε5 for any ε ∈ (0, ε0) and τ ∈ T .

Indeed, we recall that

Z = U − ε4Wξ0 = i∗
{
f (U) − ε4 [Hξ0 + f ′(U)Wξ0

]}
.

Moreover by (3.2) we deduce

Vε,τ (x) = V (εx + ε2τ + ξ0) = ε2
N∑

i=1

aix
2
i +O(ε3

(
1 + |x|3

)
).

Therefore we have

i∗
{
f (Z) − ε2Vε,τZ

}
− Z

= i∗
{

f (U − ε4Wξ0) − ε2

[
ε2

N∑
i=1

aix
2
i +O

(
ε3
(

1 + |x|3
))][

U − ε4Wξ0

]

−f (U) + ε4 [Hξ0 + f ′(U)Wξ0

]}
= i∗

{
f (U − ε4Wξ0) − f (U) + ε4f ′(U)Wξ0

}
+ i∗

{
O
(
ε5
(

1 + |x|3
)

U + ε8|Wξ0 | + ε9
(

1 + |x|3
)

|Wξ0 |
)}
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and by (4.1) and (4.8) we immediately get the claim.
We recall the useful estimate

|f (a + b) − f (a) − f ′(a)b| =
{
O(|b|p) if 1 < p ≤ 2,

O(|b|p + |a|p−2|b|2) if p ≥ 2.
(4.8)

(iii) Finally, we use a standard contraction mapping argument, combined to the fact that the term 
Nε,τ (φ) is super-linear in φ in virtue of (4.8). �

Now, for ε small enough we fill find a point τε ∈ RN so that (4.7) is also satisfied. That will 
conclude the proof.

Proposition 4.2. There exists ε0 > 0 such that for any ε ∈ (0, ε0) there exists τε ∈ RN such that 
equation (4.7) is satisfied.

Proof. Since (4.6) holds we deduce that there exist real numbers ci
ε,τ such that

Lε,τ (φε,τ ) −Nε,τ (φε,τ ) − Eε,τ =
N∑

i=1

ci
ε,τ ∂iU. (4.9)

We are going to find points τ = τε such that the ci
ε,τ ’s are zero.

Let us multiply (4.9) by ∂jU = i∗
(
f ′(U)∂jU

)
. We get

〈
Lε,τ (φε,τ ) −Nε,τ (φε,τ ) − Eε,τ , ∂jU

〉= Acj
ε,τ , (4.10)

because

〈∂iU, ∂jU 〉 =
∫
RN

f ′(U)∂iU∂jU = Aδij , where A :=
∫
RN

f ′(U) (∂1U)2 .

Moreover, by (4.8) we have

〈Lε,τ (φε,τ ), ∂jU 〉 =
∫
RN

[
f ′(U) − f ′(U − ε4Wξ0) + ε2Vε,τ

]
φ∂jU = O

(
ε7)

and

〈Nε,τ (φε,τ ), ∂jU 〉 = O
(
ε8
)

.

It remains to compute

−〈Eε,τ , ∂jU 〉 = −〈i∗
[
f (Z) − ε2Vε,τZ

]
− Z,∂jU 〉

= −
∫
N

[
f (Z) − ε2Vε,τZ

]
∂jU +

∫
N

Zf ′(U)∂jU
R R
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= ε2
∫
RN

Vε,τZ∂jU

where the last equality comes from the fact that Z = U − ε4Wξ0 is even, (see Remark 4.3), and 
∂jU is odd. Then

−〈Eε,τ , ∂jU 〉 = ε2
∫
RN

V (εx + ε2τ + ξ0)(U − ε4Wξ0)∂jU

= ε2
∫
RN

V (εx + ε2τ + ξ0)U∂jU +O(ε6)

= −1

2
ε3
∫
RN

∂V

∂yj

(εx + ε2τ + ξ0)U
2(x)dx +O(ε6)

= −1

2
ε5

⎡
⎢⎣aj τj

∫
RN

U2(x)dx + 1

2N

N∑
�,κ=1

∂3V

∂yκ∂y�∂yj

(ξ0)

∫
RN

|x|2U2(x)dx

⎤
⎥⎦

+O(ε6),

because by (3.2) and by the mean value theorem

(∂jV )(εx + ε2τ + ξ0) = aj

(
εxj + ε2τj

)
+ 1

2

N∑
�,κ=1

∂3V

∂yκ∂y�∂yj

(ξ0)
(
ε2x�xκ

)

+O
(
ε3
(

1 + |x|3
))

.

Therefore, (4.10) reads as the system

−1

2
ε5

⎡
⎣Baj τj + C

N∑
�,κ=1

∂3V

∂yκ∂y�∂yj

(ξ0) + o(1)

⎤
⎦= Acj

ε,τ for any j = 1, . . . ,N,

for some positive constants A, B and C. Finally, since all the aj ’s are different from zero, if ε is 
small enough there exists τ = τε such that the R.H.S is zero and so all the cj

ε,τε ’s are zero. �
Remark 4.3. Let us point out that Wξ0 is even in each yi ’s. By (3.10) it is enough to prove that 
W1 ∈ K⊥ which solves

−�W1 + W1 − pUp−1W1 = y2
1U(y) in RN

is even in y1, i.e. W(y1, y′) = W(−y1, y′) where y′ = (y2, . . . , yN). It is immediate to check that 
the function
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w(y) = W(y1, y
′) − W(−y1, y

′) =
N∑

i=1

ωi∂iU = U ′(|y|)
|y|

N∑
i=1

ωiyi

where ρ = |y|, for some ωi ∈ R, since it solves the linear equation

−�w + w − pUp−1w = 0.

It is clear that ω2 = · · · = ωN = 0 and so w(y) = U ′(|y|)
|y| ω1y1. Now, by the orthogonality condi-

tion we deduce

0 = 〈W1, ∂1U 〉 =
∫
RN

pUp−1∂1UW1

=
∫

{y1≥0}
pUp−1(|y|)U

′(|y|)
|y| y1W1(y1, y

′)dy +
∫

{y1≤0}
pUp−1(|y|)U

′(|y|)
|y| y1W1(y1, y

′)dy =

=
∫

{y1≥0}
pUp−1(|y|)U

′(|y|)
|y| y1

[
W1(y1, y

′) − W1(−y1, y
′)
]︸ ︷︷ ︸

=w(y)

dy =

= ω1

∫
{y1≥0}

pUp−1(|y|)
(

U ′(|y|)
|y| y1

)2

dy,

which implies ω1 = 0. That concludes the proof.
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