We consider weak positive solutions to the critical p-Laplace equation with Hardy potential in RN −Δpu − γ |x|p up−1 = up∗−1 where 1 < p < N, 0 γ < N−p p p and p∗ = Np N−p . The main result is to show that all the solutions in D1,p(RN ) are radial and radially decreasing about the origin.
Radial symmetry for a quasilinear elliptic equation with a critical Sobolev growth and Hardy potential
Vaira G.
2020-01-01
Abstract
We consider weak positive solutions to the critical p-Laplace equation with Hardy potential in RN −Δpu − γ |x|p up−1 = up∗−1 where 1 < p < N, 0 γ < N−p p p and p∗ = Np N−p . The main result is to show that all the solutions in D1,p(RN ) are radial and radially decreasing about the origin.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
OSV.pdf
accesso aperto
Tipologia:
Documento in Versione Editoriale
Licenza:
Creative commons
Dimensione
438.01 kB
Formato
Adobe PDF
|
438.01 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.