We consider weak positive solutions to the critical p-Laplace equation with Hardy potential in RN −Δpu − γ |x|p up−1 = up∗−1 where 1 < p < N, 0 γ < N−p p p and p∗ = Np N−p . The main result is to show that all the solutions in D1,p(RN ) are radial and radially decreasing about the origin.

Radial symmetry for a quasilinear elliptic equation with a critical Sobolev growth and Hardy potential

Vaira G.
2020-01-01

Abstract

We consider weak positive solutions to the critical p-Laplace equation with Hardy potential in RN −Δpu − γ |x|p up−1 = up∗−1 where 1 < p < N, 0 γ < N−p p p and p∗ = Np N−p . The main result is to show that all the solutions in D1,p(RN ) are radial and radially decreasing about the origin.
File in questo prodotto:
File Dimensione Formato  
OSV.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 438.01 kB
Formato Adobe PDF
438.01 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/348655
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 11
social impact