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We consider weak positive solutions to the critical p-Laplace equation with Hardy 
potential in RN

−Δpu− γ

|x|p
up−1 = up∗−1

where 1 < p < N , 0 � γ <
(

N−p
p

)p
and p∗ = Np

N−p
.

The main result is to show that all the solutions in D1,p(RN ) are radial and radially 
decreasing about the origin.

© 2020 Published by Elsevier Masson SAS.

r é s u m é

Nous considérons des solutions positives faibles á l’équation critique p -Laplace avec 
un potentiel Hardy dans RN

−Δpu− γ

|x|p
up−1 = up∗−1

oú 1 < p < N , 0 � γ <
(

N−p
p

)p
et p∗ = Np

N−p
.

Le principal résultat est de montrer que toutes les solutions D1,p(RN ) sont radiaux 
et radialement décroissants autour de l’origine.

© 2020 Published by Elsevier Masson SAS.
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1. Introduction and statement of the main result

We study the doubly critical problem

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− Δpu− γ

|x|pu
p−1 = up∗−1 in RN

u > 0 in RN

u ∈ D1,p(RN )

(1.1)

where Δpu := div(|∇u|p−2∇u) is the p-Laplacian operator with 1 < p < N , 0 � γ < γp :=
(

N−p
p

)p
and 

p∗ := Np
N−p is the critical exponent for the Sobolev embedding. Here D1,p(RN ) denotes the completition of 

C∞
0 (RN ), the space of smooth functions with compact support, with respect to the norm

‖u‖ :=

⎛
⎝ ∫

RN

|∇u|p
⎞
⎠

1
p

.

By standard regularity theory, see [12,23], it follows that solutions to (1.1) are of class C1,α far from the 
origin.

We address the study of the classification of positive solutions to (1.1). As we shall discuss later on, this 
is a crucial issue since problem (1.1) naturally appears in the study of p-Hardy-Sobolev inequalities as well 
as it appears as a limiting problem in many applications. Our main effort is to show that all the positive 
solutions to (1.1) are radial (and radially decreasing) about the origin. Once the radial symmetry of the 
solution is proved it is easy to derive the associated ordinary differential equation fulfilled by the solution 
u = u(r). The classification result reduces therefore to an ODE analysis that has been already carried out 
in [1] where the radial symmetry of the solutions was an assumption.

Let us start discussing the simpler case γ = 0. In this case the problem reduces to the following critical 
one ⎧⎪⎪⎨

⎪⎪⎩
− Δpu = up∗−1 inRN ,

u > 0 inRN ,

u ∈ D1,p(RN ).

(1.2)

For such a problem a huge literature is available and the classification of positive weak solutions of (1.2) is 
well understood. Indeed, for δ > 0 and x0 ∈ RN , an explicit family of solutions to (1.2) is given by

Vδ,x0(x) :=
(

δ
1

p−1αN,p

δ
p

p−1 + |x− x0|
p

p−1

)N−p
p

, (1.3)

where αN,p := N
1
p

(
N−p
p−1

) p−1
p . The family of functions given by (1.3) are the minimizers to

Sp := inf
ϕ∈D1,p(RN )

ϕ�=0

∫
RN

|∇ϕ|p

⎛
⎝ ∫

ϕp∗

⎞
⎠

p
p∗

(1.4)
RN
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and the classification of the minimizers (see [21]) follows via symmetrization arguments. Note that such a 
technique can be applied in the same way both in the semilinear case p = 2 and in the quasilinear case 
1 < p < ∞.

Furthermore, if we restrict the attention to the class of radial solutions, then the analysis carried out in 
[14] shows that all the regular radial solutions to (1.2) are given by (1.3).

For p = 2 all the solutions to the equation are classified by (1.3) as a consequence of the results in [2]
where the Kelvin transform is strongly exploited. A Kelvin type transformation is not applicable for the 
quasilinear case and this fact causes that a different proof is needed. When no a priori assumption are 
imposed, the classification of all the positive solutions to (1.2) (showing that all the solutions to (1.2) are 
given by (1.3)) has been in fact an open and challenging problem recently solved in [7,19,24] (see also [8,9]). 
The techniques used are mainly based on a fine asymptotic analysis at infinity and refined versions of the 
moving plane procedure, see [13,20].

Let us now turn to the case 0 < γ < γp but in the case p = 2 so that γ2 is the best constant in the 
Hardy-Sobolev inequality for p = 2. For

S2,γ = inf
ϕ∈D1,2(RN )

ϕ�=0

∫
RN

(
|∇ϕ|2 − γ

|x|2ϕ
2
)

⎛
⎝ ∫

RN

|ϕ|2∗

⎞
⎠

2
2∗

,

it is known that S2,γ is attained and extremals for S2,γ have the form (up to a multiplicative constant)

Uδ(x) = δ−
N−2

2 U
(x
δ

)
= αNδΓ

|x|β−(δ
4Γ

N−2 + |x| 4Γ
N−2 )N−2

2
, δ > 0, (1.5)

where

U(x) = αN

|x|β−(1 + |x| 4Γ
N−2 )N−2

2
= αN(

|x| 2
N−2β

− + |x| 2
N−2β

+
)N−2

2

with

Γ =
√

(N − 2)2
4 − γ, β± = N − 2

2 ± Γ, αN =
[

4Γ2N

N − 2

]N−2
4

,

see [3,4,22]. Moreover (1.5) gives all the solutions of the problem (1.1) for p = 2 and γ ∈ (0, γ2) and this 
has been proved in the celebrated paper [22]. In the case p = 2 it is also known that when γ < 0 then S2,γ

is not attained even if (1.5) are still solutions of the problem.
Here we are concerned with the quasilinear doubly critical case 1 < p < N and γ ∈ (0, γp). It is worth 

recalling that in [1] the authors considered minimization problem:

Sp,γ = inf
ϕ∈D1,p(RN )

ϕ�=0

∫
RN

(
|∇ϕ|p − γ

|x|pϕ
p

)
⎛
⎝ ∫

|ϕ|p∗

⎞
⎠

p
p∗

. (1.6)
RN
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It follows that 0 < Sp,γ < Sp where Sp is defined in (1.4) and Sp,γ is attained by a function u0(x) which is 
not explicit. It has been proved in [1] that all minimizers of (1.6) are radial. Also uniqueness up to scaling 
of the radial solutions as well as the asymptotic behavior are proved showing in particular that, given a 
radial solution u = u(r) to (1.1), then

lim
r→0

rγ1u(r) = C1, lim
r→+∞

rγ2u(r) = C2

and

lim
r→0

rγ1+1|u′(r)| = C1γ1, lim
r→+∞

rγ2+1|u′(r)| = C2γ2,

for some positive constants C1, C2. Here and hereafter γ1, γ2 ∈ [0, +∞), γ1 < γ2 are defined as the two roots 
of the equation

μp−2 [(p− 1)μ2 − (N − p)μ
]
+ γ = 0. (1.7)

We remark (for later use) that

0 � γ1 <
N − p

p
< γ2 � N − p

p− 1 .

Note that when p = 2 then γ1 = β− and γ2 = β+. Instead, when p �= 2 but γ = 0 then γ1 = 0 and γ2 = N−p
p−1 . 

Moreover in [25,26] the author extends the results on the asymptotic behavior proved for radial solutions 
in [1] to all weak positive solutions of (1.1).

We shall prove here that actually all positive solutions to (1.1) are radially symmetric thus allowing to 
deduce that the characterization of the solutions described here above do apply to all positive solutions. In 
particular, as a consequence of our result, we deduce uniqueness up to scaling of the positive solutions as 
well as their asymptotic behavior at the origin and at infinity.

Our main result is the following:

Theorem 1.1. Assume γ ∈ (0, γp) and let u be an energy solution to (1.1). Then u is radial and radially 
decreasing with respect to the origin.

All the proofs of the classification results described above are based on the use of the moving plane method. 
When p �= 2 this is completely not trivial because of the nonlinear degenerate nature of the operator. In 
our case, when trying to adapt the techniques developed in [9,10,19], an obstruction occurs due to the 
homogeneity of the Hardy potential. In particular this fact is related to the nonlinear nature of the operator 
that also obstructs the application of the techniques introduced in [7,22]. In fact, to face this fact, we exploit 
a different test function technique that, on the other hand, introduces several difficulties as the reader shall 
see. Let us also stress that, for the absence of the Kelvin transformation, an analysis on the behavior at 
infinity is needed. We will in fact exploit the results in [25,26] and in particular our Theorem 3.3.

1.1. Notations

Throughout the paper, we denote by Ωc the complement of a domain Ω ⊂ RN in RN , by

Ck
0 (RN ) =

{
u ∈ Ck(RN ) : u(x) → 0 as |x| → +∞

}
,

and by BR(x0) the ball of radius R centered at x0 ∈ RN .
Moreover χΩ is the characteristic function of the set Ω, (v − w)+ := max{v − w, 0} and (v − w)− :=
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min{v − w, 0}.
Finally we underline that we will denote by C, Ci, ci several constants whose value may change from line to 
line and, sometimes, on the same line. However these values will be not relevant in the proofs.

We remark that the potential |x|−p is related to the Hardy-Sobolev inequality. More precisely, for all 
u ∈ D1,p(RN ), one has

∫
RN

|u|p
|x|p � 1

γp

∫
RN

|∇u|p, (1.8)

where γ−1
p is optimal and never achieved.

As a consequence of a Pohozaev type identity, one can see that problem (1.1) does not have non-trivial 
solutions in any bounded starshaped domain with respect to the origin (Lemma 3.7 in [15]).

2. Preliminaries and known technical results

In this section we first recall useful results such as the strong comparison principle, a weighted Hardy-
Sobolev inequality and decay estimates.

Let us start the discussion on the strong comparison principles recalling the following

Theorem 2.1 (Theorem 1.4 of [11]). Let u, v ∈ C1(Ω̄) where Ω is a bounded smooth domain of RN with 
2N+2
N+2 < p < 2 or p > 2. Suppose that either u or v is a weak solution of

⎧⎪⎪⎨
⎪⎪⎩
−Δpu = f(x, u) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(2.1)

with f : Ω × [0, ∞) → R is a continuous function which is positive and of class C1 in Ω × (0, ∞). Assume 
that

−Δpu + Λu � −Δpv + Λv and u � v in Ω,

where Λ ∈ R. Then u ≡ v in Ω unless u < v in Ω.

Actually the assumption that u or v fulfill the zero Dirichlet boundary datum can be removed and 
local versions of Theorem 2.1 are available, see [17,18]. On the contrary there are no results removing the 
assumption p > 2N+2

N+2 . Therefore in some cases we could prefer to exploit also the following result:

Theorem 2.2 (Theorem 1.4 of [5]). Suppose Ω is a domain in RN and let u, v ∈ C1(Ω) weakly satisfy

−Δpu + Λu � −Δpv + Λv and u � v in Ω,

1 < p < ∞ and denote by Zu
v := {x ∈ Ω : ∇u(x) = ∇v(x) = 0}. Then if there exists x0 ∈ Ω \ Zu

v with 
u(x0) = v(x0), then u ≡ v in the connected component of Ω \ Zu

v containing x0. The same result holds if 
more generally

−Δpu− f(u) � −Δpv − f(v) and u � v in Ω,

with f : R → R locally Lipschitz continuous.



94 F. Oliva et al. / J. Math. Pures Appl. 140 (2020) 89–109
In the spirit of the moving plane procedure we shall exploit the strong comparison principle together 
with the weak comparison principle (that actually will be included in the proofs and we refer the readers to 
[10]) and improved Hardy inequalities proved in [16]. For convenience we summarize the following

Theorem 2.3 (Proposition 1.1 of [16]). Let r � 1, τ > 0, α, γ ∈ R such that

1
τ

+ γ

N
= 1

r
+ α− 1

N
,

and with

0 � α− γ � 1.

Let u ∈ C1
0 (RN \ {0}) and let 1

τ + γ
N < 0 then it holds

⎛
⎝ ∫

RN

|x|γτ |u|τ
⎞
⎠

1
τ

� C

⎛
⎝ ∫

RN

|x|rα|∇u|r
⎞
⎠

1
r

where C is a positive constant independent of u.

Remark 2.4. In Theorem 2.3 it is assumed that u ∈ C1
0 (RN \ {0}). Actually it is clear from the proof, and 

via density arguments, that the same result applies if u is defined in exterior domains and has the right 
decay properties at infinity.

To exploit Theorem 2.3 for weak positive solutions to problem (1.1) we need to know the asymptotic 
behavior of the solution at infinity. Let us start recalling some results from [25,26].

Theorem 2.5. Let u ∈ D1,p(RN ) be a weak positive solution to equation (1.1). Then there exist positive 
constants C, c depending on N, p, γ and the solution u such that

c|x|−γ1 � u(x) � C|x|−γ1 for |x| < R0, (2.2)

and

c|x|−γ2 � u(x) � C|x|−γ2 for |x| > R1. (2.3)

Moreover

|∇u(x)| � c|x|−(γ1+1) for |x| < R0, (2.4)

and

|∇u(x)| � c|x|−(γ2+1) for |x| > R1. (2.5)

Here γ1, γ2 are roots of (1.7) and such that

0 � γ1 <
N − p

p
< γ2 � N − p

p− 1 ,

while 0 < R0 < 1 < R1 are constants depending on N, p, γ and the solution u.



F. Oliva et al. / J. Math. Pures Appl. 140 (2020) 89–109 95
Finally, we recall the following regularity result for solutions of (1.1).

Theorem 2.6 ([1,12,23]). Let u be any solution of (1.1), then u ∈ C1,α
loc (RN \ {0}) with 0 < α < 1.

3. Asymptotic estimates

Here we shall prove some new gradient estimates that we will use in the next section in order to apply 
the moving plane method. The moving plane procedure is strongly related to the use of suitable comparison 
principles. When the domain is the whole space, considering problems with a source term involving the 
Hardy potential, weak comparison principles are naturally related to the use of Hardy type inequalities that 
involves the classical radial weights. Since our problem has a natural associated weight |∇u|p−2, we will 
need to relate the weight |∇u|p−2 with the weights appearing in Theorem 2.3. To do this, especially for the 
hardest case p > 2, a further information is required, namely estimates from below on the modulus of the 
gradient of the solution. This is what we prove in this section starting from the following:

Lemma 3.1. Let u, v be positive and C1-functions in a neighborhood of some point x0 ∈ RN . Then it holds

|∇u|p−2∇u · ∇
(
u− vp

up
u

)
+ |∇v|p−2∇v · ∇

(
v − up

vp
v

)
� Cp min{vp, up} (|∇ log u| + |∇ log v|)p−2 |∇ log u−∇ log v|2,

(3.1)

near x0 for some constant Cp depending only on p.

Proof. The estimate (3.1) for 1 < p < 2 can be found in Lemma 3.1 of [25]. Then we just need to prove 
(3.1) for p � 2.
By making some simple computations we find that

T : = |∇u|p−2∇u · ∇
(
u− vp

up
u

)
+ |∇v|p−2∇v · ∇

(
v − up

vp
v

)
= |∇u|p + |∇v|p − vp

(
|∇ log u|p + p|∇ log u|p−2∇ log u · (∇ log v −∇ log u)

)︸ ︷︷ ︸
(I)

− up
(
|∇ log v|p + p|∇ log v|p−2∇ log v · (∇ log u−∇ log v)

)︸ ︷︷ ︸
(II)

.

(3.2)

Now let f(t) = |a + t(b − a)|p for a, b ∈ RN then one has

f(1) = f(0) + f ′(0) +
1∫

0

(1 − t)f ′′(t),

which gives (recall that p � 2)

|b|p = |a|p + p|a|p−2a · (b− a)

+ p(p− 2)
1∫

0

(1 − t)|a + t(b− a)|p−4 ((a + t(b− a)) · (b− a))2 dt

+ p

1∫
(1 − t)|a + t(b− a)|p−2|b− a|2 dt (3.3)
0
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� |a|p + p|a|p−2a · (b− a) +
1∫

0

(1 − t)p|a + t(b− a)|p−2|b− a|2 dt.

We apply (3.3) to (I) with a = ∇ log u and b = ∇ log v and to (II) with a = ∇ log v and b = ∇ log u. Hence 
we get

T � vp

⎡
⎣ 1∫

0

(1 − t)p |∇ log u + t(∇ log v −∇ log u)|p−2 |∇ log u−∇ log v|2 dt

⎤
⎦

+ up

⎡
⎣ 1∫

0

(1 − t)p |∇ log v + t(∇ log u−∇ log v)|p−2 |∇ log u−∇ log v|2 dt

⎤
⎦

� 3
4pv

p|∇ log u−∇ log v|2

⎡
⎢⎣

1
4∫

0

|∇ log u + t(∇ log v −∇ log u)|p−2
dt

⎤
⎥⎦

+ 3
4pu

p|∇ log u−∇ log v|2

⎡
⎢⎣

1
4∫

0

|∇ log v + t(∇ log u−∇ log v)|p−2
dt

⎤
⎥⎦ .

(3.4)

Now suppose that |∇ log u| � |∇ log v|. In order to estimate the first term on the right hand side of (3.4)
we distinguish two cases.
First of all let |∇ log v −∇ log u| � 1

2 |∇ log u| then (recall 0 < t < 1)

|∇ log u + t(∇ log v −∇ log u)| � |∇ log u| − |∇ log v −∇ log u|

� 1
2 |∇ log u| � 1

4 (|∇ log u| + |∇ log v|) ,

namely

|∇ log u + t(∇ log v −∇ log u)|p−2 �
(

1
4

)p−2

(|∇ log u| + |∇ log v|)p−2
.

Otherwise if |∇ log v −∇ log u| > 1
2 |∇ log u| then we let

t0 := |∇ log u|
|∇ log v −∇ log u| ∈ (0, 2).

Hence

|∇ log u + t(∇ log v −∇ log u)| � ||∇ log u| − t|∇ log u−∇ log v||
= |t0|∇ log u−∇ log v| − t|∇ log u−∇ log v||

= |t0 − t||∇ log u−∇ log v| � 1
2 |t0 − t||∇ log u|

� 1
4 |t0 − t| (|∇ log u| + |∇ log v|) ,

since we are assuming that |∇ log u| � |∇ log v|. Therefore
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|∇ log u + t(∇ log v −∇ log u)|p−2 �
(

1
4

)p−2

|t0 − t|p−2 (|∇ log u| + |∇ log v|)p−2
.

Then, observing that 
∫ 1

4
0 |t0 − t|p−2 � Cp, one has

3
4pv

p|∇ log u−∇ log v|2

⎡
⎢⎣

1
4∫

0

|∇ log u + t(∇ log v −∇ log u)|p−2
dt

⎤
⎥⎦

� Cpv
p (|∇ log u| + |∇ log v|)p−2 |∇ log u−∇ log v|2.

In the case |∇ log u| � |∇ log v|, arguing in the same way, we deduce that

3
4pu

p|∇ log u−∇ log v|2

⎡
⎢⎣

1
4∫

0

|∇ log v + t(∇ log u−∇ log v)|p−2
dt

⎤
⎥⎦

� Cpu
p (|∇ log u| + |∇ log v|)p−2 |∇ log u−∇ log v|2,

which concludes the proof. �
As we have already observed, a key tool in our proofs is the moving plane technique. To exploit it we need 

the following notations. We will study the symmetry of the solutions in the ν− direction for any ν ∈ SN−1

(i.e. |ν| = 1). Since the problem is invariant up to rotations we fix ν = e1 and we let

Tλ =
{
x ∈ RN : x1 = λ

}
,

Σλ =
{
x ∈ RN : x1 < λ

}
,

xλ = Rλ(x) = (2λ− x1, x
′) ∈ R×RN−1,

uλ(x) = u(xλ).

Now we state a result that will be used afterwards.

Theorem 3.2. Let 1 < p < N and let v ∈ C1,α
loc (RN \ {0}) with 0 < α < 1 be a positive solution to

−Δpv −
γ

|x|p v
p−1 = 0 in RN \ {0}, (3.5)

such that

lim
|x|→0

v(x) = ∞ lim
|x|→+∞

v(x) = 0. (3.6)

Then v is a radial (strict) decreasing function.

Proof. To prove that v is a radial non-increasing function we apply the moving plane technique. We fix a 
direction ν = e1 and, for λ < 0 and ε > 0 (small), we take as test function ϕ1,λ = v1−p(vp− (vλ + ε)p)+χΣλ

and ϕ2,λ = (vλ + ε)1−p(vp − (vλ + ε)p)+χΣλ
in the weak formulation solved, respectively, by v and vλ. We 

note that vλ solves

−Δpvλ − γ
p
vp−1
λ = 0. (3.7)
|xλ|



98 F. Oliva et al. / J. Math. Pures Appl. 140 (2020) 89–109
We also remark that, by using (3.6),

supp(ϕj,λ) ⊂⊂ Σλ \ {0λ} j = 1, 2.

Furthermore, since ϕ1,λ , ϕ2,λ have compact support far from the singularities, we can use the weak formu-
lations of (3.5), (3.7) and, taking the difference, we deduce that∫

Σλ

|∇v|p−2∇v · ∇ϕ1,λ − |∇vλ|p−2∇vλ · ∇ϕ2,λ

︸ ︷︷ ︸
(I)

+ γ

∫
Σλ

− 1
|x|p (vp − (vλ + ε)p)+

︸ ︷︷ ︸
(II)

+γ

∫
Σλ

1
|xλ|p

(
vλ

vλ + ε

)p−1

(vp − (vλ + ε)p)+ = 0.
(3.8)

Now by exploiting (3.1)

(I) =
∫
Σλ

|∇v|p−2∇v · ∇ϕ1,λ − |∇(vλ + ε)|p−2∇(vλ + ε) · ∇ϕ2,λ

� Cp

∫
Σλ∩{v�vλ+ε}

(vλ + ε)p (|∇ log v| + |∇ log(vλ + ε)|)p−2 |∇ log v −∇ log(vλ + ε)|2
(3.9)

and

(II) �
∫
Σλ

− 1
|x|p (vp − vpλ)+ (3.10)

Then

Cp

∫
Σλ∩{v�vλ+ε}

(vλ + ε)p (|∇ log v| + |∇ log(vλ + ε)|)p−2 |∇ log v −∇ log(vλ + ε)|2

+ γ

∫
Σλ

− 1
|x|p (vp − vpλ)+ + γ

∫
Σλ

1
|xλ|p

(
vλ

vλ + ε

)p−1

(vp − (vλ + ε)p)+ � 0.
(3.11)

We are in position to apply Fatou’s lemma as ε → 0 getting

Cp

∫
Σλ∩{v�vλ}

vpλ (|∇ log v| + |∇ log vλ|)p−2 |∇ log v −∇ log vλ|2

γ

∫
Σλ

(
− 1
|x|p + 1

|xλ|p
)

(vp − vpλ)+ � 0,
(3.12)

and, since |x| > |xλ| in Σλ, the second term on the left hand side of (3.12) is nonnegative. Then, it follows 
that

Cp

∫
vpλ (|∇ log v| + |∇ log vλ|)p−2 |∇(log v − log vλ)|2 = 0
Σλ∩{v�vλ}
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which implies that log v− log vλ is constant Σλ∩{v � vλ} and since log v− log vλ = 0 on Tλ we have v = vλ
on Σλ ∩ {v � vλ} for any λ < 0 Hence v � vλ on Σλ for any λ < 0. We repeat the same argument in the 
−e1 direction deducing that v is symmetric with respect to the e1-direction. This procedure can be clearly 
performed in any direction ν ∈ SN−1 whence one gets the radial monotone nonincreasing behavior of v.

A simple application of the Hopf Lemma (that can be applied since the level sets are spheres) shows now 
that v has no critical points and in particular the radial derivative is strictly negative. �

Next we provide the corresponding lower bound for the decay rate of |∇u| of Theorem 2.5.

Theorem 3.3. Let 1 < p < N and let u be a solution of (1.1). Then there exists R2 > 0 and a constant 
C̄ > 0 such that

|∇u(x)| � C̄

|x|γ2+1 for |x| > R2. (3.13)

Proof. Once that Theorem 3.2 is in force we can carry out the proof borrowing some ideas from Theorem 
2.2 of [19]. We sketch it for the sake of completeness.
By contradiction let us assume that there exist sequences of radii Rn and points xn with Rn → +∞ as 
n → +∞ and |xn| = Rn, such that

|∇u(xn)| � θn
|Rn|γ2+1 , (3.14)

with θn → 0 as n → +∞. Without loss of generality we suppose Rn > 1 for any n and we set wRn
(x) :=

Rγ2
n u(Rnx). One can observe that for fixed 0 < a < A then ||wRn

||L∞(BA\Ba) is bounded with respect to n. 
Otherwise if |x| > R1

Rn
one deduces by Theorem 2.5 that

c̄

Aγ2
� wRn

(x) � C̄

aγ2
,

and that ⎧⎪⎪⎨
⎪⎪⎩
wRn

(x) � C̄

Aγ2
x ∈ ∂BA,

wRn
(x) � c̄

aγ2
x ∈ ∂Ba.

(3.15)

Therefore, the above bound in L∞(BA \ Ba) implies that wRn
is also uniformly bounded in C1,α(K) with 

0 < α < 1 for any compact set K ⊂ BA \ Ba. Finally, since a > 0, without loss of generality we suppose 
that the C1,α estimates hold in the closure of BA \ Ba. Hence, for x ∈ BA \ Ba and up to subsequences, 
one gets that wRn

(x) −→ wa,A(x) in C1,α′ for 0 < α′ < α. We also underline that wa,A(x) satisfies (3.15). 
Furthermore, since

−ΔpwRn
− γ

|x|pw
p−1
Rn

=
wp∗−1

Rn

R
(p∗−p)γ2−p
n

in RN ,

then

−Δpwa,A − γ
p
wp−1

a,A = 0 in BA \Ba. (3.16)
|x|
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Now, for j ∈ N, one can take aj = 1
j and Aj = j and reasoning as above one constructs waj,Aj

. Then, 
for j → ∞, a diagonal argument implies the existence of a limiting profile w∞ such that w∞ ≡ waj ,Aj

in 
BAj

\Baj
. In particular from (3.16) read for waj ,Aj

one has

−Δpw∞ − γ

|x|pw
p−1
∞ = 0 in RN \ {0}.

From (3.15) with a = aj and A = Aj , one gets that the limiting profile w∞ is such that

lim
|x|→+∞

w∞(x) = 0 and lim
|x|→0

w∞(x) = +∞.

Therefore Theorem 3.2 can be applied providing that w∞ is radial with negative radial derivative.
To conclude let now xn be as in (3.14) and set yn = xn

Rn
. Then, by (3.14), it follows that |∇wRn

(yn)|
tends to zero as n → +∞. Up to subsequences, since |yn| = 1, we have that yn → ȳ ∈ ∂B1. Consequently, 
by the uniform convergence of the gradients one has that ∇w∞(ȳ) = 0, which is in contradiction with the 
definition of w∞, since, by Theorem 3.2, this cannot happen. �
4. Proof of the symmetry result

We are now able to prove Theorem 1.1. First of all we underline that it is easy to see that uλ solves

−Δpuλ − γ

|xλ|p
up−1
λ = up∗−1

λ in RN . (4.1)

In what follows we set

Λ− = {λ < 0 : u � uμ in Σμ, ∀μ � λ} , Λ+ = {λ > 0 : u � uμ in Σμ, ∀μ � λ} .

If Λ− �= ∅ and Λ+ �= ∅ we denote by λ−
0 := sup Λ− and by λ+

0 := inf Λ+.
Roughly speaking, the moving plane method consists of two main steps: first in reflecting the domain 

about a fixed hyperplane and proving that the value the solution at each reflected point is larger than the 
value at the point itself and secondly in moving the hyperplane to a critical position; finally the solution 
results to be symmetric with respect to this limit hyperplane.

Proof of Theorem 1.1. We prove the result by analyzing, sometimes in different ways, the case 1 < p < 2
and the case p > 2. For p = 2 we refer to [22]. We divide the proof in two steps.

Step 1: Λ− �= ∅ and Λ+ �= ∅.

We only prove Λ− �= ∅, which is the existence of λ < 0 with |λ| sufficiently large such that u � uμ in Σμ

for every μ � λ. The proof of the fact that Λ+ �= ∅ is analogous and, at the end of the step, we outline the 
main changes in the proof in order to conclude it.
For the entire proof we denote by R0, R1 and R2 the radii given by (2.2), (2.3) and (3.13) and we firstly 
observe that for |λ| > max(R1, R2) one has, by (2.2) and (2.3), that there exists R̃0 := R̃0(λ) such that 
R̃0 < R0, BR̃0

(0λ) ⊂ Σλ and

sup
x∈BR̃0 (0λ)

u(x) < inf
x∈BR̃0 (0λ)

uλ(x). (4.2)

Therefore, exploiting also (2.3), we deduce that

sup
x∈B (0 )

u(x) ≤ inf
x∈BR̃ (0λ)

uλ(x),

R̃0 λ 0
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which gives that u < uλ in BR̃0
(0λ) ⊂ Σλ for every λ � λ and with R̃0 independent of λ. Moreover we also 

denote by η ∈ C∞
0 (B2R(0)) a cut-off function such that 0 � η � 1, η ≡ 1 on BR(0) and |∇η| � 2

R .
In what follows we employ the following notation: Σ′

λ = Σλ \BR̃0
(0λ) and B̂ρ := Bρ(0) ∩ Σ′

λ for ρ > 0.
If α > max{2, p} and λ � λ, we consider

ϕ1,λ = ηαu1−p(up − up
λ)+χΣλ

, ϕ2,λ = ηαu1−p
λ (up − up

λ)+χΣλ
. (4.3)

We remark that supp(ϕj,λ) ⊂ B̂2R for j = 1, 2. Then we take ϕ1,λ as a test function in (1.1), ϕ2,λ in (4.1)
and we subtract. Hence, denoting by ψλ := (up − up

λ)+ and by ϕλ := (u − uλ)+ one gets
∫

B̂2R

(
|∇u|p−2∇u · ∇ϕ1,λ − |∇uλ|p−2∇uλ · ∇ϕ2,λ

)
+ γ

∫
B̂2R

(
− 1
|x|p + 1

|xλ|p
)
ηαψλ

=
∫

B̂2R

(up∗−p − up∗−p
λ )ηαψλ,

(4.4)

and, since |x| � |xλ| in Σλ, one has that the second term on the left hand side of (4.4) is nonnegative. Hence∫
B̂2R

ηα
(
|∇u|p−2∇u · ∇(u1−pψλ) − |∇uλ|p−2∇uλ · ∇(u1−p

λ ψλ)
)

︸ ︷︷ ︸
I1

� −α

∫
B̂2R

ηα−1u1−pψλ|∇u|p−2∇u · ∇η

︸ ︷︷ ︸
I2

+α

∫
B̂2R

ηα−1u1−p
λ ψλ|∇uλ|p−2∇uλ · ∇η

︸ ︷︷ ︸
I3

+
∫

B̂2R

(up∗−p − up∗−p
λ )ηαψλ

︸ ︷︷ ︸
I4

.

(4.5)

We start by estimating I1. By using (3.1) it yields that for p > 2 one has

I1 � Cp

∫
B̂2R∩{u�uλ}

ηαup
λ (|∇ log u| + |∇ log uλ|)p−2 |∇ log u−∇ log uλ|2

� Cp

∫
B̂2R∩{u�uλ}

ηα
(uλ

u

)p
u2 (|∇u| + |∇uλ|)p−2 |∇ log u−∇ log uλ|2

� c1

∫
B̂2R∩{u�uλ}

ηαu2 (|∇u| + |∇uλ|)p−2 |∇ log u−∇ log uλ|2,

(4.6)

while for 1 < p < 2 we obtain

I1 � Cp

∫
B̂2R∩{u�uλ}

ηαup
λ

|∇ log u−∇ log uλ|2
(|∇ log u| + |∇ log uλ|)2−p

� Cp

∫
ˆ

ηαu2
λ

|∇ log u−∇ log uλ|2

(|∇u| + |∇uλ|)2−p .

(4.7)
B2R∩{u�uλ}
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We remark that in (4.6) we used that

uλ

u
� c̃ in Σλ, (4.8)

and c1 := Cpc̃
p. Indeed if x ∈ Σλ \BR1(0λ) then from (2.2) and (2.3) one has (recall that |x| � |xλ|)

uλ

u
� c̃1

|x|γ2

|xλ|γ2
� c̃1.

Otherwise if x ∈ Σλ ∩BR1(0λ) then

uλ

u
� c̃1|λ|γ2 inf

x∈BR1 (0)
u(x) � c̃2,

and we set c̃ = min(c̃1, ̃c2). Now it follows from (2.3) and (2.5) that

I2 � α

∫
B̂2R∩{u�uλ}

ηα−1u
(
1 −

(uλ

u

)p)
|∇u|p−1|∇η|

� 2α
R

∫
B̂2R\B̂R

u|∇u|p−1 � C

R

∫
B̂2R\B̂R

1
|x|(γ2+1)(p−1)+γ2

� C

Rβ

(4.9)

where, from here on, β := pγ2 + p − N which is strictly positive since γ2 > N−p
p . For I3, using (2.3) and 

(4.8), we deduce that

I3 � C

∫
B̂2R\B̂R

αηα−1u1−p
λ (up − up

λ)+ |∇uλ|p−1|∇η|

� 2
R

∫
B̂2R\B̂R∩{u�uλ}

uλ

((
u

uλ

)p

− 1
)
|∇uλ|p−1

� 2
R

∫
B̂2R\B̂R∩{u�uλ}

uλ

(
u

uλ

)p

|∇uλ|p−1 � C

R

∫
B̂2R\B̂R∩{u�uλ}

u|∇uλ|p−1

� C

R

⎛
⎝ ∫

RN

|∇uλ|p
⎞
⎠

p−1
p

⎛
⎜⎝ ∫

B̂2R\B̂R

up

⎞
⎟⎠

1
p

� C

R

⎛
⎜⎝ ∫

B̂2R\B̂R

1
|x|γ2p

⎞
⎟⎠

1
p

� C

R
β
p

.

(4.10)

For the term I4 we first note that (since u � uλ)

I4 =
∫

B̂2R

(
up∗−1

up−1 − up∗−1
λ

up−1
λ

)
ηαψλ �

∫
B̂2R

1
up−1

(
up∗−1 − up∗−1

λ

)
ηαψλ,

then applying twice the Lagrange Theorem and using (2.3) one has that in case p∗ � 2

I4 � cp

∫
B̂2R

up∗−2ηαϕ2
λ � cp

∫
B̂2R

1
|x|γ2(p∗−2) η

αϕ2
λ,

while for 1 < p∗ < 2 (recall (4.8))
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I4 � cp

∫
B̂2R

ηαϕ2
λ

u2−p∗

λ

=
∫

B̂2R

(
u

uλ

)2−p∗
ηαϕ2

λ

u2−p∗ � cp

∫
B̂2R

ηαϕ2
λ

u2−p∗ � cp

∫
B̂2R

1
|x|γ2(p∗−2) η

αϕ2
λ,

which gives for any p > 1

I4 � cp

∫
B̂2R

1
|x|γ2(p∗−2) η

αϕ2
λ. (4.11)

Let us now consider f(t) = log(a + t(b − a)) where a, b > 0 (b � a) then

log b = log a + (b− a)
1∫

0

1
a + t(b− a) ,

and since t ∈ [0, 1] we get

b− a = log b− log a∫ 1
0

1
a+t(b−a)

� b(log b− log a). (4.12)

We use (4.12) with b = u and a = uλ and estimate the right hand side of (4.11) (by using also (2.3)) as

I4 � C

∫
B̂2R∩{u�uλ}

1
|x|γ2(p∗−2) η

αu2 (log u− log uλ)2

� C

∫
B̂2R

1
|x|γ2p∗ η

α
(
(log u− log uλ)+

)2
.

Moreover

I4 � C

∫
B̂2R

1
|x|β∗−2α+2

(
η

α
2 (log u− log uλ)+

)2

� C

|λ|β∗

∫
B̂2R

|x|2α−2 (η α
2 (log u− log uλ)+

)2
,

(4.13)

where

β∗ := γ2(p∗ − p) − p; 2α := −[(γ2 + 1)(p− 2) + 2γ2].

We underline that β∗ − 2α + 2 = γ2p
∗ and that β∗ > 0 since γ2 > N−p

p . For the right hand side of (4.13)
we can apply Theorem 2.3 where r = 2, τ = 2 which implies that

γ := α− 1 = − (γ2 + 1)p
2

and that

1
2 + γ

N
= N − γ2p− p

2N < 0

since γ2 > N−p . Hence we obtain
p
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I4 � C

|λ|β∗

∫
B̂2R

|x|2α|∇(η α
2 (log u− log uλ)+)|2, (4.14)

and now, in order to estimate the right hand side of (4.14), we distinguish between the case p > 2 and the 
case 1 < p < 2. From (4.14) and for p > 2 we get

I4 � C

|λ|β∗

∫
B̂2R∩{u�uλ}

1
|x|(γ2+1)(p−2) η

αu2|∇ log u−∇ log uλ|2

+ C

|λ|β∗

∫
B̂2R∩{u�uλ}

|x|2α (log u− log uλ)2 |∇η|2

� C

|λ|β∗

∫
B̂2R∩{u�uλ}

ηαu2|∇u|p−2|∇ log u−∇ log uλ|2 + C

|λ|β∗R2

∫
B̂2R\B̂R

|x|2α

� C

|λ|β∗

∫
B̂2R∩{u�uλ}

ηαu2 (|∇u| + |∇uλ|)p−2 |∇ log u−∇ log uλ|2 + C

|λ|β∗Rβ
.

(4.15)

Then, by using the estimates (4.6), (4.9), (4.10) and (4.15) in (4.5), we

(
c1 −

C

|λ|β∗

) ∫
B̂2R∩{u�uλ}

ηαu2 (|∇u| + |∇uλ|)p−2 |∇ log u−∇ log uλ|2 � C

R
β
p

+ C

|λ|β∗Rβ
+ C

Rβ
.

For |λ| sufficiently large, as R goes to +∞, we deduce that

∫
Σ′

λ∩{u�uλ}

u2 (|∇u| + |∇uλ|)p−2 |∇ log u−∇ log uλ|2

= lim
R→+∞

∫
B̂R∩{u�uλ}

u2 (|∇u| + |∇uλ|)p−2 |∇ log u−∇ log uλ|2 � 0.

Now we have to estimate the right hand side of (4.14) in the case 1 < p < 2.
We first remark that 2α < 0 (for N > 2) and, since |x| � |xλ|, one has that |x|2α � |xλ|2α. Then

I4 � C

|λ|β∗

∫
B̂2R∩{u�uλ}

|xλ|2αηα|∇ log u−∇ log uλ|2

+ C

|λ|β∗

∫
B̂2R∩{u�uλ}

|x|2α (log u− log uλ)2 |∇η|2.
(4.16)

Let R̄ = max{R1, R2} and let AR̄,R̃0
= BR̄(0λ) \BR̃0

(0λ). Then we get

B̂2R = ÂR̄,R̃0
∪
(
B̂2R \ ÂR̄,R̃0

)
.

Exploiting (2.3) we deduce that
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∫
B̂2R\ÂR̄,R̃0

|xλ|2αηα|∇ log u−∇ log uλ|2

� C

∫
B̂2R\ÂR̄,R̃0

|xλ|(γ2+1)(2−p)|xλ|−2γ2ηα|∇ log u−∇ log uλ|2

� C

∫
B̂2R\ÂR̄,R̃0

u2
λη

α |∇ log u−∇ log uλ|2

(|∇u| + |∇uλ|)2−p .

(4.17)

In AR̄,R̃0
it holds that |xλ| � R̃0 and, since we are far from 0λ, we also get that |∇uλ| is bounded. Let 

L := inf
BR̄(0)\BR̃0

(0)
u. Hence we get (by using (4.8) and the fact that (|∇u| + |∇uλ|)2−p � C away from 0, 0λ)

∫
AR̄,R̃0

|xλ|2αηα|∇ log u−∇ log uλ|2 � CR̃2α
0

∫
AR̄,R̃0

ηα|∇ log u−∇ log uλ|2

� CR̃2α
0

L2

∫
AR̄,R̃0

u2
λη

α |∇ log u−∇ log uλ|2

(|∇u| + |∇uλ|)2−p .

(4.18)

Gathering (4.17) and (4.18) in the first term of (4.16) and reasoning as in (4.15) for the second term of 
(4.16) one yields to

I4 � C

|λ|β∗

∫
B̂2R∩{u�uλ}

u2
λη

α |∇ log u−∇ log uλ|2

(|∇u| + |∇uλ|)2−p + C

|λ|β∗Rβ
. (4.19)

Hence, by collecting (4.7), (4.9), (4.10) and (4.19) in (4.5), we get

(
c1 −

C

|λ|β∗

) ∫
B̂2R∩{u�uλ}

ηαu2
λ

|∇ log u−∇ log uλ|2

(|∇u| + |∇uλ|)2−p � C

R
β
p

+ C

Rβ
+ C

|λ|β∗Rβ
.

Once again we can choose |λ| large enough so that, as R goes to +∞, it yields

∫
Σ′

λ∩{u�uλ}

u2
λ

|∇ log u−∇ log uλ|2

(|∇u| + |∇uλ|)2−p = lim sup
R→+∞

∫
B̂R

u2
λ

|∇ log u−∇ log uλ|2

(|∇u| + |∇uλ|)2−p � 0.

Hence, in both cases, log u − log uλ is constant and since log u − log uλ = 0 on Tλ then log u − log uλ = 0 on 
the set Σ′

λ ∩ {u � uλ}. Therefore we get u � uλ on Σλ. Hence Λ− �= ∅ and λ−
0 exists and it is also finite.

In order to show that Λ+ �= ∅ then we take as test functions

φ1,λ = u1−p(up − up
λ)−χΣλ

, φ2,λ = u1−p
λ (up − up

λ)−χΣλ

and, analogously to what already done, we are able to prove the claim so that there exists λ+
0 which is also 

finite.

Step 2: λ−
0 = λ+

0 = 0.

We argue by contradiction assuming that λ−
0 �= 0. Arguing as in the proof of Step 1 we will get the 

contradiction proving that u � u − in Σ − for all 0 ≤ ε � ε for some ε > 0.
λ0 +ε λ0 +ε
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In what follows we shall exploit the strong comparison principle. To do this we start noticing that from 
Step 1 and by continuity it holds that

u � uλ−
0

in Σλ−
0
.

By Theorem 2.2 we deduce that u ≡ uλ−
0

or u < uλ−
0

in any connected component C of Σλ−
0
\ Zu (Zu =

{∇u = 0}). We will frequently use the fact that Zu has zero Lebesgue measure [10].
Assume first that Σλ−

0
\Zu has only one connected component. We observe that u ≡ uλ−

0
is not possible 

in this case since, by (2.2), there exists BR̃0
(0λ−

0
) where u < uλ−

0
; this means that u < uλ−

0
in Σλ−

0
\ Zu.

Assume now that there are at least two connected components of Σλ−
0
\Zu. Our Theorem 3.3 implies that 

Zu is bounded so that only one component can be unbounded. We refer to such a unbounded connected 
component as C1 and set

Cλ := (Cc
1 ∩ Σλ−

0
) ∪Rλ(Cc

1 ∩ Σλ−
0
)

If u ≡ uλ−
0

in C1 it is easy to see that, by symmetry, Cλ contains at least one connected component of 
RN \ Zu. But this is not possible as it has been shown in [10, Theorem 1.4] and [6, Lemma 5]. If else 
u ≡ uλ−

0
in C2 for some bounded component C2, then in this case we set

Cλ := C2 ∪Rλ(C2) ,

and also in this case, by symmetry, Cλ would contain at least one connected component of RN \ Zu thus 
providing a contradiction. Resuming we just proved that

u < uλ−
0

in Σλ−
0
\ Zu .

Now, recalling that Zu is bounded by Theorem 3.3, we fix R > 0 in such a way that

Zu ⊂ BR(0) ,

and, for τ > 0, we let Zτ
u be an open set containing Zu such that L(Zτ

u) < τ (that exists since L(Zu) = 0). 
Then, for δ, ε, R, τ > 0, we denote by

BR,ε := Bc
R
(0) ∩ Σλ−

0 +ε, Sε
δ :=

(
(Σλ−

0 +ε \ Σλ−
0 −δ) ∩BR(0)

)
∪ (Zτ

u ∩ Σλ−
0 −δ),

Kδ := BR(0) ∩ Σλ−
0 −δ ∩ (Zτ

u)c,

where δ � δ so that Kδ is nonempty. We underline that this construction gives

Σλ−
0 +ε = BR,ε ∪ Sε

δ ∪Kδ.

We also remark that, since Kδ is compact, then by the uniform continuity of u and uλ, for ε > 0 small 
enough one has that u < uλ−

0 +ε in Kδ for every ε � ε. Moreover we underline the existence of R̃0 such that 
u < uλ−

0 +ε in BR̃0
(0λ−

0 +ε) ⊂ Σλ−
0 +ε for every ε � ε and with R̃0 independent of ε as done in Step 1.

From now on, for R > R, we consider η ∈ C∞
0 (B2R(0)) a cut-off function with 0 � η � 1, η ≡ 1 on BR(0)

and |∇η| � 2
R . Then, letting α > max{2, p}, we consider the following test functions

ϕ1,λ−+ε = ηαu1−p
(
up − up

−

)+
χΣ − , ϕ2,λ−+ε = ηαu1−p

−

(
up − up

−

)+
χΣ − ,
0 λ0 +ε λ0 +ε 0 λ0 +ε λ0 +ε λ0 +ε
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and, analogously to Step 1, ψλ−
0 +ε := (up − up

λ−
0 +ε

)+ and by ϕλ−
0 +ε := (u − uλ−

0 +ε)+.
Let us take ϕ1,λ−

0 +ε as a test function in (1.1), ϕ2,λ−
0 +ε in (4.1) and, reasoning as in Step 1, one yields to

c1

∫
B̂2R∩{u�u

λ
−
0 +ε

}

ηαu2
(
|∇u| + |∇uλ−

0 +ε|
)p−2

|∇ log u−∇ log uλ−
0 +ε|2

�
∫

B̂2R∩BR,ε

(up∗−p − up∗−p

λ−
0 +ε

)ηαψλ +
∫

B̂2R∩Sε
δ

(up∗−p − up∗−p

λ−
0 +ε

)ηαψλ−
0 +ε + C

R
β
p

+ C

Rβ
.

(4.20)

Here we have used once again the fact that 
u
λ
−
0 +ε

u � c̃ for every 0 � ε � ε̄ as to deduce (4.8).
In order to estimate the first term on the right hand side of (4.20) we argue exactly as to estimate I4 in 
(3.2) (taking into account Remark 2.4) where here R plays the role of λ in Step 1. Hence we get

∫
B̂2R∩BR,ε

(up∗−p − up∗−p

λ−
0 +ε

)ηαψλ � C

Rβ

+ C

R
β∗

∫
B̂2R∩BR,ε∩{u�u

λ
−
0 +ε

}

ηαu2
(
|∇u| + |∇uλ−

0 +ε|
)p−2

|∇ log u−∇ log uλ−
0 +ε|2.

For the second term on the right hand side of (4.20) we reason as in Step 1, getting
∫

B̂2R∩Sε
δ

(up∗−p − up∗−p

λ−
0 +ε

)ηαψλ � Cu

∫
B̂2R∩Sε

δ∩{u�u
λ
−
0 +ε

}

(log u− log uλ−
0 +ε)

2,
(4.21)

where

Cu :=

⎧⎪⎪⎨
⎪⎪⎩

sup
Sε
δ

up∗−2 if p∗ � 2,

inf
Sε
δ

up∗−2 if p∗ < 2.

Now we need to divide the estimate by the value of p; indeed if p > 2 we apply a suitable weighted Poincaré 
inequality to the right hand side of (4.21) which can be found in Theorem 3.2 of [10]. Hence in this case 
one has ∫

B̂2R∩Sε
δ

(up∗−p − up∗−p

λ−
0 +ε

)ηαψλ

� C2
p(Sε

δ )Cu

∫
B̂2R∩Sε

δ∩{u�u
λ
−
0 +ε

}

|∇u|p−2|∇ log u−∇ log uλ−
0 +ε|2

�
C2

p(Sε
δ )Cu

inf
Sε
δ

u2

∫
B̂2R∩Sε

δ∩{u�u
λ
−
0 +ε

}

u2
(
|∇u| + |∇uλ−

0 +ε|
)p−2

|∇ log u−∇ log uλ−
0 +ε|2,

where Cp(E) is the Poincaré constant which goes to zero as |E| → 0. Otherwise if 1 < p < 2 one can apply 
the classical Poincaré inequality in order to deduce
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∫
B̂2R∩Sε

δ

(up∗−p − up∗−p

λ−
0 +ε

)ηαψλ

� C2
p(Sε

δ )Cu

∫
B̂2R∩Sε

δ∩{u�u
λ
−
0 +ε

}

|∇ log u−∇ log uλ−
0 +ε|2

�
CC2

p(Sε
δ )Cu

inf
Sε
δ

u2

∫
B̂2R∩Sε

δ∩{u�u
λ
−
0 +ε

}

u2
(
|∇u| + |∇uλ−

0 +ε|
)p−2

|∇ log u−∇ log uλ−
0 +ε|2,

which can be deduced since in Σλ−
0 +ε \BR̃0

(0λ−
0 +ε) one has that

(|∇u| + |∇uλ|)2−p � C,

for some constant C which does not depend on ε � ε. Hence in both cases one has that

c1

∫
B̂2R∩{u�u

λ
−
0 +ε

}

ηαu2
(
|∇u| + |∇uλ−

0 +ε|
)p−2

|∇ log u−∇ log uλ−
0 +ε|2

� C

R
β
p

+ C

Rβ
+ C

R̄β∗

∫
(B̂2R∩BR̄,ε)∩{u�u

λ
−
0 +ε

}

ηαu2
(
|∇u| + |∇uλ−

0 +ε|
)p−2

|∇ log u−∇ log uλ−
0 +ε|2

+
CC2

p(Sε
δ )Cu

inf
Sε
δ

u2

∫
Sε
δ∩{u�u

λ
−
0 +ε

}

(
|∇u| + |∇uλ−

0 +ε|
)p−2

|∇ log u−∇ log uλ−
0 +ε|2.

Now we take care of the variable parameters R̄, δ, ̄ε. First we fix R̄ large such that

C

c1R̄β∗ < 1.

Then, since C2
p(Ω) goes to zero if the Lebesgue measure of Ω goes to zero, we choose δ, ̄ε, τ small so that

CC2
p(Sε

δ )Cu

c1 inf
Sε
δ

u2 < 1

for every 0 � ε � ε̄. Hence it follows that∫
B̂2R∩{u�u

λ
−
0 +ε

}

u2
(
|∇u| + |∇uλ−

0 +ε|
)p−2

|∇ log u−∇ log uλ−
0 +ε|2 � C

R
β
p

+ C

Rβ

getting again (as R → +∞)∫
Σ

λ
−
0 +ε

∩{u�u
λ
−
0 +ε

}

u2
(
|∇u| + |∇uλ−

0 +ε|
)p−2

|∇ log u−∇ log uλ−
0 +ε|2 = 0,

which gives that u � uλ−
0 +ε in Σλ−

0 +ε which contradicts the definition of λ−
0 . This proves that λ−

0 = 0. In 

an analogous way we deduce that λ+
0 = 0, which gives the symmetry of u along the e1-direction. Repeating 
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the same arguments in the remaining N − 1 linearly independent directions of RN then one deduces that u
is symmetric about the origin and that is a radially decreasing function. �
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