Protein-surfactant interactions are the focus of extensive research due to their many applications in food technology and detergent industry. In this work, we investigate the interaction between bovine serum albumin (BSA) and five relevant surfactants to the cleaning industry, which differ in head group charge, namely: sodium alkyl ether sulphate (C12-C14 AE3S), Cocoamidopropyl amine-oxide (CapAO), alkyl dimethyl amine oxide (C12C14AO), octaethylene glycol monodecyl ether (C10EO8) and didecyldimethylammonium chloride (DDAC). The results collected with fluorescence emission spectroscopy highlight zwitterionic and nonionic surfactants have the lowest affinity for the protein, as their interaction does not result in protein denaturation. Instead, higher and mutually close binding constants are found for AE3S (anionic) and DDAC (cationic) due to the presence of electrostatic interactions between the surfactant heads and the charged residues of BSA. AE3S leads to irreversible protein unfolding. The case of DDAC is more complex and has been studied through a combination of fluorescence, DLS, PGSE-NMR and zeta-potential measurements. At low concentration DDAC binding neutralizes negatively charged residues present in BSA, causing a reversible flocculation of BSA after the isoelectric point

Binding isotherms of surfactants used in detergent formulations to bovine serum albumin

Giuseppe colafemmina;Gerardo Palazzo
2020

Abstract

Protein-surfactant interactions are the focus of extensive research due to their many applications in food technology and detergent industry. In this work, we investigate the interaction between bovine serum albumin (BSA) and five relevant surfactants to the cleaning industry, which differ in head group charge, namely: sodium alkyl ether sulphate (C12-C14 AE3S), Cocoamidopropyl amine-oxide (CapAO), alkyl dimethyl amine oxide (C12C14AO), octaethylene glycol monodecyl ether (C10EO8) and didecyldimethylammonium chloride (DDAC). The results collected with fluorescence emission spectroscopy highlight zwitterionic and nonionic surfactants have the lowest affinity for the protein, as their interaction does not result in protein denaturation. Instead, higher and mutually close binding constants are found for AE3S (anionic) and DDAC (cationic) due to the presence of electrostatic interactions between the surfactant heads and the charged residues of BSA. AE3S leads to irreversible protein unfolding. The case of DDAC is more complex and has been studied through a combination of fluorescence, DLS, PGSE-NMR and zeta-potential measurements. At low concentration DDAC binding neutralizes negatively charged residues present in BSA, causing a reversible flocculation of BSA after the isoelectric point
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11586/348057
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact