The increasing presence of renewable energy plants has created new challenges such as grid integration, load balancing and energy trading, making it fundamental to provide effective prediction models. Recent approaches in the literature have shown that exploiting spatio-temporal autocorrelation in data coming from multiple plants can lead to better predictions. Although tensor models and techniques are suitable to deal with spatio-temporal data, they have received little attention in the energy domain. In this paper, we propose a new method based on the Tucker tensor decomposition, capable of extracting a new feature space for the learning task. For evaluation purposes, we have investigated the performance of predictive clustering trees with the new feature space, compared to the original feature space, in three renewable energy datasets. The results are favorable for the proposed method, also when compared with state-of-the-art algorithms.
Multi-aspect renewable energy forecasting
Corizzo R.;Ceci M.;
2021-01-01
Abstract
The increasing presence of renewable energy plants has created new challenges such as grid integration, load balancing and energy trading, making it fundamental to provide effective prediction models. Recent approaches in the literature have shown that exploiting spatio-temporal autocorrelation in data coming from multiple plants can lead to better predictions. Although tensor models and techniques are suitable to deal with spatio-temporal data, they have received little attention in the energy domain. In this paper, we propose a new method based on the Tucker tensor decomposition, capable of extracting a new feature space for the learning task. For evaluation purposes, we have investigated the performance of predictive clustering trees with the new feature space, compared to the original feature space, in three renewable energy datasets. The results are favorable for the proposed method, also when compared with state-of-the-art algorithms.File | Dimensione | Formato | |
---|---|---|---|
IJ_46__1-s2.0-S0020025520307611-main_INS TENSOR.pdf
non disponibili
Tipologia:
Documento in Versione Editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
3.96 MB
Formato
Adobe PDF
|
3.96 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
TENSOR_INS.pdf
accesso aperto
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
3.06 MB
Formato
Adobe PDF
|
3.06 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.