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Abstract

The increasing presence of renewable energy plants has created new chal-
lenges such as grid integration, load balancing and energy trading, making
it fundamental to provide effective prediction models. Recent approaches in
the literature have shown that exploiting spatio-temporal autocorrelation in
data coming from multiple plants can lead to better predictions. Although
tensor models and techniques are suitable to deal with spatio-temporal data,
they have received scarce attention in the energy domain. In this paper, we
propose a new method based on Tucker tensor decomposition, capable of ex-
tracting a new feature space for the learning task. For evaluation purposes,
we have investigated the performances of predictive clustering trees with the
new feature space, compared to the original feature space, on three renewable
energy plants. The results are favorable for the proposed method, also when
compared with state-of-the-art algorithms.

1. Introduction

The presence of renewable energy sources like photovoltaic (PV) and wind
parks has grown consistently during the last years, with the purpose of reduc-
ing pollution emission. However, renewable power sources are variable and
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intermittent in their energy output, because the energy produced may also
depend on uncontrollable factors, such as weather conditions. This becomes
an issue when learning reliable forecasting models, which are of fundamental
importance in grid integration, load balancing and energy trading.

In addition, a major challenge in energy forecasting is the high data di-
mensionality. In fact, there are too many factors that can affect the energy
outputs, and exploiting their combination effectively in the predictive mod-
eling task is not trivial.

The rationale of this work is that modeling data as a tensor could offer
a richer representation than the common “flat model” n × m (instances ×
features) matrix, that is beneficial in the renewable energy forecasting task.
In fact, especially in the case of multi-plant datasets, a flat data model fails to
consider the dependencies between data coming from different plants (spatial
information), on different days and at different time (temporal information)
and related to different properties (features). On the contrary, tensor-based
data modeling represents such dependencies by modeling data in its natural
form (in our case multivariate spatio-temporal time series).

In this work, we adopt tensor decompositions for feature extraction.
Thus, the features extracted are expected to offer more accurate results when
used for predictive tasks. Specifically, we adopt Tucker decomposition, since
it is more flexible compared to other approaches such as PARAFAC decom-
position, which assumes that all dimensions have an identical number of
latent variables. Tucker decomposition, instead, allows each dimension to
have a different number of components, which is relevant to our problem.
For instance, the number of latent variables for energy plants can naturally
be different from the number of latent variables in the time dimension.

Another more theoretical motivation for this work comes from the known
issue of the possible collinearity between the several independent variables
in regression models [27], [42] and [4]. Ideally, regression models are built
by assuming that the independent variables X1, . . . , Xn have high correlation
with the dependent variable Y , but they are scarcely correlated with each
other, offering a reliable and statistically robust model. Collinearity is a phe-
nomenon in which two or more independent variables of a multiple regression
model are highly correlated, i.e. they are partially redundant. Some of the
problems induced by collinearity are the following:

• Reduced accuracy in the estimate of one variable’s impact on the de-
pendent variable Y (indeterminacy of regression coefficients);
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• If observed data change unexpectedly, the coefficient estimates of the
multiple regression model may change abnormally;

• Regression models could be affected by overfitting [33].

Interestingly, problems due to collinearity do not show in the models
fit. The resulting model may have very small residuals, but the regression
coefficients are actually poorly estimated.

This problem is strictly connected with the classical feature redundancy
problem, especially in the case of linear dependency between two independent
variables and it is one of the main theoretical reasons which motivate the
application of feature selection/feature extraction techniques in regression
tasks. A treatment suggested for data that exhibit collinearity is deleting
some of the variables from a fitted model [41]. Therefore, variable subset
selection is a desirable part of regression analysis. This is particularly true in
our case, where features representing different aspects of weather conditions
(e.g., solar irradiance and cloud cover) can hardly be considered independent
(see Fig. 1).

In this paper, we face this problem with a tensor data model which should,
in principle, allow us to derive a new space, that better represents feature
dependencies, temporal dependencies and spatial dependencies hidden in the
data, along the three orthogonal dimensions, thus avoiding collinearity with-
out mixing-up information coming from them. In energy forecasting, this
aspect is particularly important since the different variables present pair-
wise correlations and incorporating them as-is in predictive models impacts
reduced performance due to collinearity. Moreover, in energy forecasting,
there are natural time dependencies due to the cyclic nature of the geo-
physical phenomena under investigation (temperature, irradiance, etc.) and
the spatial dependencies (some plants can show similar behaviours, possibly
because they are located in the same geographical area).

Methodologically, the main contribution of this paper is to propose an
adaptive tensor factorization approach, based on Tucker decomposition. The
adaptive solution, able to directly process data in the form of a stream, is
used to improve prediction through feature extraction. In this way:

i) The new feature space is possibly smaller than the original feature
space, with a reduction of the running time of any learning algorithm.
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ii) The new feature space allows us to capture spatial autocorrelation,
thanks to the tensor-based data modeling, which naturally represents
the spatial dimension.

iii) The new feature space allows us to deal with the concept drift phe-
nomenon, thanks to the tensor-based data modeling which naturally
represents the temporal dimension.

iv) Collinearity problems are reduced, together with possible overfitting
problems.

Besides the main contribution of the paper, additional practical contri-
butions can be summarized as follows:

1) We perform extensive experiments with the proposed approach using
three multi-plant energy datasets from photovoltaic and wind parks.
The experiments are performed considering different values for the in-
put parameters, different training window sizes and different learning
settings. These experiments assess different practical scenarios in en-
ergy forecasting, emphasizing which specific configurations lead to the
most accurate predictions.

2) We perform a comparison of the proposed approach with state-of-the-
art algorithms both for feature extraction and forecasting (namely,
PCA, Auto-Encoder embeddings, neural networks, predictive cluster-
ing trees and time series forecasting), considering the standard Root
Mean Square Error (RMSE) measure and the Minimum Description
Length Penalization (MDLP) measure, that allows us to evaluate the
prediction error and the complexity of a model simultaneously. We also
include statistical validation of the results.

This twofold analysis offers an important perspective for practitioners in
the energy field. In fact, selecting the ideal learning setting and its appropri-
ate configuration, including the data representation chosen, the amount of
training data to be used, and the ideal configuration of parameter values, can
significantly impact the ability to predict the energy produced in different
experimental conditions. This ability impacts, in turn, the opportunity to
mitigate losses and risks in energy trading and in the power grid integration
and scheduling of renewable energy.

4



The paper is structured as follows. Section 2 discusses works in the
literature related to the scope of our study. Section 3 presents the method.
Section 4 describes the experimental setting, the datasets and the results.
Finally, Section 5 concludes the paper.

2. Background

2.1. Concept drift aware energy forecasting

In the literature, several researchers addressed the energy forecasting task
with solutions which range from physical to statistical. The former rely
on the refinement of NWP (Numerical Weather Prediction) forecasts with
physical considerations (e.g. obstacles and orography) [8] or measured data
(an approach often referred to as Model Output Statistics or MOS) [43][46],
whereas the latter are based on adaptive models that establish a relationship
between historical values and forecast variables. Combinations of statistical
and physical approaches for renewable energy power forecasting have also
been recently investigated [11]. Recently proposed approaches also use ma-
chine learning and data mining techniques (independently of whether they
use NWP data or not). These are based on time series [16], whereas oth-
ers learn forecasting models from data, like autoregressive (AR) models [1],
predictive clustering models [20], artificial neural networks (ANNs) [15], or
SVM classifiers [52].

A common aspect that is typically taken into account is the phenomenon
of concept drift, due to the fact that data may change characteristics and
distribution over time [5]. In this respect, it has been noted that physical
property behaviors (e.g. wind speed and solar irradiation) are typically sub-
ject to the concept drift phenomenon and, when this phenomenon is present,
adaptive models are generally considered to produce more reliable predictions
with a continuous training phase [30].

However, to the best of our knowledge, there is no study in the energy
forecasting literature that tackles this problem exploiting tensor techniques.
To fill this gap, in order to handle concept drift, our method represents time
as an explicit dimension of analysis in the tensor data structure. Moreover,
our model is flexibly retrained using window-based data snapshots, thus in-
corporating the latest data available, which may be subject to changes in the
data distribution.
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2.2. Spatial autocorrelation in multi-plant energy datasets

An additional aspect that should be considered is the spatial proximity
of plants. While most of the works in the literature consider forecasting
solutions for single plants and ignore the information collected from/at other
plants/sites in the vicinity, different studies in the literature [15] [14] [6] [18]
have shown that considering multiple plants and the spatial autocorrelation
induced by their proximity can lead to better predictions. This has been
proven also in other domains, such as ecological applications [53].

On this respect, some methods in the literature, exploit the informa-
tion deriving from the distance between plants. For instance, in [31], geo-
distributed weather observations in the spatial proximity of a wind farm are
exploited as off-site predictors. The approach in [14] extracts features that
model the spatio-temporal autocorrelation between plants for each weather
feature [14]. The extracted feature space can be used by off-the-shelf machine
learning methods to perform forecasting.

Focusing on auto-regressive models such as Vector Auto-Regression (VAR),
in [7], the authors propose a spatio-temporal framework that combines Re-
cursive Least Squares fitting and Gradient Boosting. In a similar fashion,
in [23], spatio-temporal dependencies are considered by means of a sparse
parametrization of VAR models, which leads to the extraction of coefficients
that link sites with a positive spatial co-dependence, and to the disregard
sites with weak dependencies. In [54], the authors propose a parametric
model for tracking conditional spatio-temporal dependencies, under the as-
sumption that the local forecasting error made at time t at the target plant
depends on the errors previously observed at a set of neighboring plants. In
[12], multiple sparse structures for the VAR model are taken into account
by exploiting the least absolute shrinkage and selection operator (LASSO)
framework.

Another related subclass of approaches are based on Spatial Auto-Regressive
(SAR) model, defined as:

êi = λ

K∑
j=1

wijej + εi i = 1, . . . , K, (1)

where K is the number of training examples, ej = Yj − Y is the prediction
error for the average, wij represents the spatial proximity or similarity be-
tween i and j, λ represents the spatial dependence, and εi is the error, which
is normally distributed.
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Some researchers exploited this formulation to customize traditional pre-
dictive modeling approaches, in order to consider spatial autocorrelation. In
particular, [56] propose a decision tree learning algorithm that substitutes
the traditional entropy-based measure with the “spatial entropy” [39]. This
measure allows to catch how the entropy is dispersed over the spatial neigh-
borhoods. Similar decision trees approaches are also presented in [51], where
the spatial entropy is computed for each example as the weighted information
gain of examples that overlap.

Specifically for regression, another typical way to take spatial autocorrela-
tion into account in the learning task is Geographically Weighted Regression
(GWR) [28]. In GWR, a linear regression model is associated to each point
(a, b). In this way, the weighting of an example is not a constant, but
depends on (a, b). Formally:

y(a, b) = α0(a, b) +
∑
k

αk(a, b)xk(a, b) + ε(a,b), (2)

where αk(a, b) is estimated using observations close to (a, b).
The approach of using autocorrelation aware local models is also used

in Kriging [9], where an optimal linear interpolation method is exploited to
estimate the response values y(a, b) at each plant (a, b). Such linear in-
terpolation step takes into account a structural component, which defines
a constant trend (average), a random spatially correlated component, and
noise. A spatial associative classifier that simultaneously learns spatial as-
sociation rules is proposed in [13]. [40] presents a regression method that
captures both global and local spatial autocorrelation for the predictive at-
tributes in the learning phase.

On the contrary of the aforementioned approaches, which train a model
exclusively based on the target space, our method exploits latent dependen-
cies between variables in the feature space, i.e. weather conditions, to opti-
mize the forecasting of energy production. In this perspective, in our method
we follow the intuition that, by exploiting one-day-ahead weather forecasts
and their latent interactions, latent interactions of the variables over time
and latent interactions of the variables on the geographical dimension, it is
possible to provide valuable information for the forecasting task, especially
when weather conditions are changing over time. The aim of this approach
is to obtain an increased predictive accuracy of the model.
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2.3. Complex feature space in energy datasets
One important aspect related to energy datasets is represented by the

complexity of time series data, which often constitutes a limit for predic-
tive tools when applied directly to the original data representation. Popular
time series analysis techniques in the literature, such as Empirical Mode De-
composition (EMD) [50], variational mode decomposition [24], and singular
spectrum analysis [25], exhibit the common behavior to simplify complex
time series into a finite number of intrinsic mode functions. Such techniques
have been also exploited in the energy domain, with the intention to simplify
the signal and carry out the forecasting task exploiting the information from
the dimensions in a combined manner [3].

However, these techniques operate on univariate time series. As a conse-
quence, the application of such techniques on all the univariate time series
leads to a consistent increase in the number of features, which negatively im-
pacts the prediction effectiveness due to the curse of dimensionality problem.

Focusing on multi-plant energy forecasting, it is worth noting that data
usually has a multi-dimensional structure with dimensions such as plants,
time and features, which model spatio-temporal information and weather in-
formation. The different features present positive pairwise correlation (see
Fig. 1). These conditions represent an additional challenge for forecasting
tools, which translates to a reduced accuracy in forecasts. One possibility to
address these challenges is resorting to feature reduction and feature extrac-
tion techniques.

A recent group of approaches for feature reduction are tensor factoriza-
tions (TFs) [45, 26], which are successfully applied in a wide range of do-
mains from Psychometrics and Chemometrics to Environmental Monitoring
and Signal Processing. Today, they are known as state-of-the-art tools for
feature reduction, when learning better models from multi-dimensional data
sets. Some recent reports [47, 17] demonstrate the extraordinary performance
of TFs in feature extraction for the classification of high-dimensional data
sets, in particular, in brain data analysis and computer vision. TF is also
used in various other prediction problems. Examples include audio signals for
music genre classification [44], hyperspectral images classification [49], multi-
sensor vibration signals for damage detection in engineering structures [48]
and telecommunication usage data for anomaly detection [55], among others.
Although the effectiveness of TFs has been generally recognized in feature
extraction, their application in the predictive modeling of energy production
has, to the best of our knowledge, been investigated only for clustering [29].
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In our method, we address the challenge of modeling the complex feature
space of energy datasets by leveraging TFs as feature extraction techniques,
with the aim of improving the accuracy of forecasting models.

3. Method

The task we consider in this work is to predict the power generated by
multiple plants considering i) historical data on power production, ii) weather
forecast data provided by NWP systems, iii) weather information collected
by sensors and iv) geographic coordinates of the plants. The output is a
per-hour prediction for the next day. The learning algorithms update the
prediction models every day. We use historical weather information collected
by sensors as features in the training phase, whereas we use weather forecast
data provided by NWP systems as features for predictions.

In the next subsection we provide the basic concepts of tensors and Tucker
decomposition. The proposed method is presented in subsections 3.2, 3.3 and
3.4.

3.1. Preliminary concepts: Tensors and Tucker decomposition

A tensor is a mathematical object for extension of scalars, vectors and
matrices to higher dimensions. More formally, an N -way or Nth-order tensor
is an element of the tensor product of N vector spaces, each with its own
coordinate system [38].

Tucker decomposition is a form of higher-order PCA [36], which decom-
poses a tensor into a core tensor multiplied (or transformed) by a matrix
along each way (or mode).

Given a three-way tensor X ∈ RI1×I2×I3 , we have

X ≈ G ×1 A
(1) ×2 A

(2) ×3 A
(3) =

R1∑
p=1

R2∑
q=1

R3∑
r=1

gpqr · a1
p ◦ a2

q ◦ a3
r (3)

where, A(1) ∈ RI1×R1 , A(2) ∈ RI2×R2 and A(3) ∈ RI3×R3 are the factor
matrices and can be thought of as the principal components in each mode,
whereas G ×1A

(1)×2A
(2)×3A

(3) is the n-mode (matrix) product of a tensor
and a matrix. The tensor G ∈ RR1×R2×R3 is called the core tensor and
its entries show the level of interaction between the different components.
Finally, R1, R2, and R3 are the number of components (i.e. columns) in the
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(a) PV Italy (b) Wind NREL

(c) LightSource

Figure 1: Correlation matrices of the different datasets analyzed in this study.
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factor matrices A(1), A(2) and A(3), respectively. A graphical representation
of a Tucker decomposition of a three-way array is shown in Fig. 2.

There are several methods for fitting the Tucker model. The most popular
one is the Alternating Least Square (ALS), which is also used in this work
(see Algorithm 1 for more details).

Algorithm 1: The Tucker decomposition algorithm: Alternating least
squares algorithm to compute a rank-(R1, R2, ..., RN) Tucker decompo-
sition for an Nth order tensor X of size I1 × I2 × · · · × IN . Y(i) is the
i-th mode of the tensor Y .
Data: X , R1, R2, . . . , RN

Result: G,A(1),A(2), . . . ,A(N)

1 initialize A(i) ∈ RIi×Ri for i = 1, . . . , N using HOSVD;
2 repeat
3 for i = 1, . . . , N do

4 Y ← X ×1 A
(1)> · · · ×i−1 A(i−1)> ×i+1 A

(i+1)> · · · ×N A(N)> ;

5 A(i) ← Rn leading singular vectors of Y(i);

6 until fit does not improve or maximum number of iterations is
reached ;

7 G ← X ×1 A
(1)> ×2 A

(2)> · · · ×N A(N)>;

One of the natural applications of the Tucker decomposition is feature
reduction (as in PCA). This is because the core tensor G can be seen as a
compressed version of X [38], while the factor matrices can be seen as the
principal components in each mode [38][48]. In this work we exploit this
property for the forecasting task described in Section 1.

3.2. The learning task and the feature extraction process

The learning task is performed according to the self-adaptive online train-
ing strategy, using a time-based sliding window S [30] of size s (past s days of
historical data) or using a time-based landmark window L of increasing size
s (considering all historical data available), whereas the forecasting horizon
is one-day-ahead, hour by hour (see Fig. 7). This means that the prediction
model is updated every day, that the learning phase only takes into account
data collected in the last s days and that the learned forecasting model is used
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Figure 2: Tucker decomposition of a three-way array X ∈ RI×J×K modeled as a core
tensor G ∈ RP×Q×R and factor matrices A(1) ∈ RI×P ,A(2) ∈ RJ×Q,A(3) ∈ RK×R.

only for predicting the energy produced for the next day. In this scenario,
we have two variants of the learning task:

• Hourly variant : We consider the hour of the day as the reference unit
of observation. That is, for a specified plant, a single day consists
of 24 instances represented in terms of m independent variables, each
associated with a target label representing the observed production for
the specified hour.

• Daily variant : We consider the day as the reference unit of observation.
That is, for a specified plant, a single day consists of one single instance,
represented in terms of m independent time series. Each instance is
associated with a vector of 24 target labels which represents the time
series of production for the whole day.

More technically, given a time-based sliding window S (or a time-based
landmark window L) of historical data (training set/labeled instances), i.e.
instances for which the numeric target variable (power) is known, and weather
predictions W for each plant for the next day (unlabeled instances), i.e. in-
stances for which the numeric target variable (power) is not known, we rep-
resent S (or L) as a fourth order tensor Xlabeled(F, P,D,H) and W as a third
order tensor Xunlabeled(F, P,H), where each dimension is represented as fol-
lows. F : Features (set of weather variables); P : Plants (set of plants); D:
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Days (set of days in the time window; |D| = s); H: Hours (set of hours of
the day).

It is noteworthy that the tensorsXlabeled(F, P,D,H) andXunlabeled(F, P,H)
model the spatial, temporal and feature-based dimensions of the data,

Once Xlabeled(F, P,D,H) and Xunlabeled(F, P,H) are generated, they can
be the subject of the feature extraction process, performed via Tucker de-
composition for both the Hourly or Daily variants. The goal is to obtain the
following:

• A new training set Rlabeled (n × r matrix) of reduced dimensionality,
with the same labels Y of the original training set S (or L);

• A new set Runlabeled (matrix) of reduced dimensionality for unlabeled
instances with the same feature space of Rlabeled.

Any additional time invariant feature which cannot be directly mapped
in F , P , D, and H, can be subsequently added to Rlabeled and Runlabeled. This
is the case of the spatial coordinates of the plants (latitude, longitude).

The proposed variants for the feature extraction process are explained in
detail in the following subsections.

It is important to note that the granularity considered in this study de-
pends on the application at hand. In fact, in the energy field, a forecasting
horizon of 24 hours at a hourly granularity is the most useful to perform re-
newable energy scheduling, integration, and trading. However, the proposed
method is not dependent on a specific granularity, neither in the time di-
mension nor in the spatial dimension. Therefore, our method is flexible and
the selection of the time granularity can be generalized and decided for any
application at hand.

3.3. The hourly variant

Given the fourth order tensor Xlabeled(F, P,D,H) and the third order
tensor Xunlabeled(F, P,H), they are joined in the same structure X of size
|F | · |P | · (|D|+ 1) · |H|.

The Tucker decomposition is performed on X with a desired value of rank
for each mode (RD, RF , RP , RH), resulting in a core tensor G and the factor
matrices R (UD of size |D| + 1 · RD, UF of size |F | · RF , UP of size |P | · RP

and UH of size |H| ·RH).
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The core tensor G and its entries show the level of dependency between
the different dimensions, whereas the factors (which contain orthogonal vec-
tors) can be thought of as the principal components in each mode [38]. This
motivates us to exploit factor matrices (namely A(1),A(2), ...,A(N)) in the
feature extraction, which is also coherent with the usual exploitation of PCA
for feature extraction from matrices, as well as with the exploitation of factor
matrices obtained by PARAFAC tensor factorization (see [48]).

Rlabeled is obtained by performing a “Cartesian product”1 between the
matrices UD, UP , UH . More specifically, the first |D| rows of the matrix UD
are concatenated with all the rows of UH and UP . Similarly, Runlabeled is
obtained as the “Cartesian product” between the (|D|+ 1)-th row of UD and
the matrices UH , UP . Analytically, given the matrices UD,UP and UH , as well

as the matrices ŨD, ŨH , ŨP , U
D

, U
H

, U
P

defined in Fig. 3, Rlabeled and
Runlabeled are defined as follows:

Rlabeled = (ŨD(1 : |D| · |H| · |P |, 1 : |D|)× UD(1 : |D|, ∗)×
×UD

) + (ŨP (1 : |D| · |H| · |P |, ∗)× UP × UP
) +

+(ŨH(1 : |D| · |H| · |P |, ∗)× UH × UH
) (4)

Runlabeled = (ŨD(|D| · |H| · |P |+ 1 : |D|+ 1 · |H| · |P |, |D|+ 1)×
×UD(|D|+ 1, ∗)× UD

) +

+(ŨP (|D| · |H| · |P |+ 1 : |D|+ 1 · |H| · |P |, ∗)× UP × UP
) +

+(ŨH(|D| · |H| · |P |+ 1 : |D|+ 1 · |H| · |P |, ∗)× UH × UH
) (5)

At the end of the process, we obtain a matrix Rlabeled of |D| · |H| · |P |
rows and RD +RH +RP columns (representing historical data) and a matrix
Runlabeled of 1 · |H| · |P | rows and RD + RH + RP columns (representing the
next day). See Fig. 5 for a schematic representation of Rlabeled and Runlabeled.

Rlabeled and Runlabeled don’t natively include labels (target space), as they
are a new representation of the original feature space. The labels (namely

1The term “Cartesian product” is a clear abuse of notation. This is necessary in order to
simplify the explanation of the method. Analytic definitions are provided in the following.
The symbols : and ∗ denote the selection of a range of rows or columns, and all rows or
columns, respectively.
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Figure 3: Hourly variant: definition of the matrices ŨD, ŨH , ŨP , U
D

, U
H

, U
P

.

the production observed for a specified plant and hour of the day) can be
then incorporated from the original dataset (one value per row). The Hourly
variant of the feature extraction process is graphically depicted in the upper
part of Fig. 4.

Finally, in order to avoid problems due to different ranges for the values
of features, we perform a column-wise min-max normalization [32] of the
feature space of Rlabeled and Runlabeled to scale the values of each feature in
[0, 1].

3.4. The daily variant

This variant works similarly to the Hourly variant: the Tucker decomposi-
tion on a tensor structure X is derived from Xlabeled and Xunlabeled. However,
in order to consider the whole day as a reference unit of observation, the
factor matrices considered for the feature extraction are UD and UP . The
resulting matrix Rlabeled is obtained by a “Cartesian product” between the
first |D| rows of UD and UP , whereas the matrix Runlabeled is derived from a
“Cartesian product” between the last row |D|+ 1 of UD and UP .

Formally, given the matrices UD and UP , as well as the matrices ŨD, ŨP

defined in Fig. 6, U
D

, U
P

, Rlabeled and Runlabeled are defined as follows:
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variant). In the Hourly variant, Y represents the energy produced (single value) for a
given triple (day, hour, plant), and ”X” denotes the “Cartesian product” among the factor
matrices UD, UH , UP . In the Daily variant,Y represents the time series (vector) of the
energy produced for a given pair (day, plant), and ”X” denotes the “Cartesian product”
among the factor matrices UD and UP .

16



Rlabeled = ŨD(1 : |D| · |P |, 1 : |D|)× UD(1 : |D|, ∗)× UD
+

+ŨP (1 : |D| · |P |, ∗)× UP × UP
(6)

Runlabeled = ŨD(|D| · |P |+ 1 : |D|+ 1 · |P |, |D|+ 1)×
×UD(|D|+ 1, ∗)× UD

+

+ ŨP (|D| · |P |+ 1 : |D|+ 1 · |P |, ∗)× UP × UP
(7)

Rlabeled is of size |D| · |P | rows and RD + RP columns, whereas Runlabeled

is of size 1 · |P | rows and RD +RP columns.
The labels (target space) to be subsequently incorporated in Rlabeled and

Runlabeled are the time series of production observed for a specified plant for
the whole day considered, hour by hour (multi-target representation consist-
ing of a vector of |H| elements per row).

The Daily variant of the feature extraction process is graphically depicted
in the lower part of Fig. 4.

As in the hourly variant and with the same motivations, we perform a
min-max normalization [32] of the feature space.

4. Evaluation

We implemented the feature extraction tool in Matlab and Java exploiting
the Tensor Toolbox [2]. Extracted features were then used to train predictive
clustering tree models (a form of regression trees), using the CLUS algorithm
[37]. This choice was motivated by recent literature which has shown that
predictive clustering trees outperform all other approaches in the one-day-
ahead power forecasting task [14]. CLUS considers a tree as a hierarchy
of clusters (Predictive Clustering Trees - PCTs): the top-node corresponds
to one cluster containing all the data, which is recursively partitioned into
smaller clusters while moving down the tree. CLUS, including PCTs for
multi-target regression [? ], is available at http://clus.sourceforge.net.

4.1. Experimental setting

For evaluation, a random sampling of 10% of the days has been performed
repeatedly, generating 5 splits (for each of the three datasets considered in
this empirical evaluation). For each split, the production of each day selected
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Figure 5: Graphical representation of the resulting matrices Rlabeled ∈
R(|P |·|H|·|D|)×(RD+RH+RP ) and Runlabeled ∈ R(|P |·|H|)×(RD+RH+RP ) for the Hourly
variant and Rlabeled ∈ R(|P |·|D|)×(RD+RP ) and Runlabeled ∈ R|P |×(RD+RP ) for the Daily
variant.
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Figure 6: Daily variant: definition of the matrices ŨD, ŨP , U
D

and U
P

.

as the testing day is obtained by using a model trained on a sliding window
of 30, 60 or 90 days preceding the testing day, respectively, or on a landmark
window model (see Fig. 7). In this way, we guarantee that data from future
time instants are not being considered in the training procedure (an aspect
that wouldn’t be taken into account using a standard evaluation approach
like cross-validation). For a fair evaluation, this setting is applied both to
our method, that we call TUCKER-CLUS, and to competitive approaches.

Moreover, in order to guarantee a realistic evaluation, the values of ir-
radiance (PV dataset) and wind speed (Wind dataset) considered for the
next day (testing set) are the values queried by numerical weather predic-
tion (NWP) models and not values observed by sensor data (not available
beforehand).

In order to assess the contribution of the tensor-based feature extraction
in terms of improvement in the predictive capabilities of the model, we com-
pare its performances with three additional approaches, namely, Principal
Components Analysis (PCA) [36], Auto-Encoder neural network embeddings
(AE) [34, 19] [34], and Empirical Mode Decomposition (EMD) [50]. There-
fore, we include comparisons with three additional methods, PCA-CLUS,
AE-CLUS, and EMD-CLUS which are characterized by their own feature
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Figure 7: Evaluation (training and testing) procedure with time-based sliding window
model of size D days (left) and landmark window model of increasing size D days (right).

extraction phase, and subsequently exploit CLUS as learning algorithm. For
fairness, we compare the performances of TUCKER-CLUS, PCA-CLUS, AE-
CLUS and EMD-CLUS when they extract the same number of features (equal
value for the rank parameter). However, EMD decomposes each univariate
time series into a finite number of intrinsic mode functions. Therefore, it
returns a higher number of extracted features compared to the original fea-
ture space. To avoid an excessive increase in the number of features that
would lead to the curse of dimensionality, we limit the number of dimensions
extracted to 3 for each univariate time series.

All the results obtained by the method proposed in this paper (TUCKER-
CLUS) are also compared with the results obtained by the ARIMA (AutoRe-
gressive Integrated Moving Average) model. We consider ARIMA models as
baseline models since they have been successfully applied in several time se-
ries analyses and forecasting tasks in the last years [10] and, for this reason,
are considered state-of-the-art . Finally, we also compare our results with
Long Short-Term Memory neural networks (LSTM), for their demonstrated
reliability in predictive tasks with time series [35]. In particular, we adopt a
DL4J2 implementation for regression. For LSTM, the best model is selected
by performing a grid search on the dropout parameter (d ∈ {0.1, 0.3, 0.5})
and we report the results obtained with the best configuration.

2https://deeplearning4j.org/
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4.2. Evaluation Measures

The performance of regression models is usually evaluated by means of the
standard root mean square error (RMSE) and mean absolute error (MAE)
criteria. Their values for a sample of size n is calculated as:

RMSE =

√∑n
i=1(yi − ŷi)2

n
; MAE =

∑n
i=1(yi − ŷi)

n
; (8)

where yi is the actual value (measured) and ŷi is the predicted value. We
report RMSE and MAE results averaged over the split, the testing day and
the hour of the day.

Besides RMSE and MAE, in order to evaluate simultaneously the model
simplification introduced by the feature extraction and the error reduction,
we also report the results in terms of the Minimum Description Length Pe-
nalization measure (MDLP) proposed in [22]. This measure, according to the
Minimum Description Length principle, prefers a simpler model to a more
complex model, if they are equally accurate.

In our work, this measure is employed to compare TUCKER-CLUS with
CLUS, run using the initial feature set.

The MDLP measure is calculated as:

MDLP = −log2P (Y|ŵ) + q(log2 p+ 2), (9)

where:

• q is the number of features in the model (reduced set)

• p is the initial number of features

• −log2 P (Y|ŵ) represents the number of bits necessary to define a prob-
ability distribution of the residuals, given some parameters ŵ:

−log2P (Y|ŵ) =
n

2 ln 2

[
ln

(
2π ·RMSEp

)
+

(
RMSEp

RMSEq

)2]
, (10)

where RMSEp and RMSEq represent the RMSE obtained with the
initial and reduced number of features, respectively. (We refer to [22]
for additional details).

Smaller values of MDLP indicate simpler (constructed on a smaller num-
ber of features) and/or more accurate models.

The results presented in the next section consider both the RMSE and
MDLP measures. For the latter, in order to facilitate comparison, we perform
min-max normalization.
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4.3. Datasets

In this work, three datasets are considered:

• PV Italy. The data are collected at regular intervals of 15 minutes
(measurements start at 2:00 and stop at 20:00 every day) by sensors
located on 17 plants in Italy. The time period spans from January
1st, 2012 to May 4th, 2014. More details about data preparation steps
performed on this dataset can be found in [14].

• Wind NREL. This dataset was modeled by 3TIER using the Weather
Research & Forecasting (WRF) model. Five plants with the highest
rated production have been selected, obtaining the time series of wind
speed and production observed every 10 minutes, for a time period of
two years (from January 1st, 2005 to December 31st, 2006). Hourly
aggregation was performed. The data was not affected by outliers or
missing values.

• LightSource3. Solar energy production data for the year 2017 from 7
plants located in the United Kingdom. Spot values, collected at a time
granularity of 1 minute, are aggregated hourly.

For all the datasets the following input features are represented: latitude,
longitude of the i-th plant; day and hour, respectively; altitude and azimuth;
plant ID; weather parameters, such as ambient temperature, irradiance, pres-
sure, wind speed, wind bearing, humidity, dew point, cloud cover, descriptive
weather summary. Weather parameters are either measured (training phase)
or forecast (testing phase).

From these features, only altitude, azimuth and weather parameters are
the subject of the feature extraction process, since they are time variant data.

Weather data are extracted from Forecast.io (http://forecast.io/),
the expected altitude and azimuth are extracted from SunPosition (http:
//www.susdesign.com/sunposition/index.php), whereas the expected ir-
radiance (PV Italy and LightSource datasets only) is extracted from PVGIS
(http://re.jrc.ec.europa.eu/pvgis/apps4/pvest.php). The description
of the datasets is summarized in Table 1.

3This dataset is not publicly available, even if anonymized, due to legal reasons.
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Table 1: Brief description of datasets

Dataset Plants Days Hours Instances (Hourly) Instances (Daily)
PV Italy 17 856 19 276488 14552
Wind NREL 5 730 24 87590 3650
LightSource 7 365 19 48545 2555

4.4. Results

The first analysis performed was aimed at investigating the performances
of the proposed method, in terms of RMSE and MAE, with different rank
values for the Tucker decomposition4. The selection of the candidate rank
values, has been carried out to extract a feature space that represents a trade-
off between accuracy and compactness of the data representation. From the
results, shown in Table 2, 3 and 4 it is possible to observe that TUCKER-
CLUS accuracy is rather stable w.r.t. different values of rank and different
training window sizes.

Additionally, the RMSE and MAE results in Table 2, 3 and 4 show that
TUCKER-CLUS clearly outperforms all the other approaches in the major-
ity of cases. To better compare all the approaches globally, we used the
corrected Friedman test and the post-hoc Nemenyi test following the indica-
tions reported in [21].

From the results, presented in Fig. 8, we can see that TUCKER-CLUS
outperforms all other algorithms. By comparing TUCKER-CLUS with CLUS,
we can see that they are not statistically different, but CLUS is also similar
to AE-CLUS, which is not the case of TUCKER-CLUS. The superiority of
TUCKER-CLUS is confirmed by a signed Wilcoxon rank test for all pairwise
combinations of methods (see Table 5). Here, we can see that, in terms of
RMSE, TUCKER-CLUS significantly outperforms all the competitors, taken
independently (including CLUS).

It is noteworthy that the execution of EMD-CLUS with the LightSource
dataset (Daily setting) was not successful due to memory overhead. In all
other cases where the execution was successful, the results show that decom-

4The Tucker decomposition is run using a fixed tolerance on the difference in fit equal
to 10−4, the maximum number of iterations set to 50, and different training window sizes,
whereas the values of the rank parameter are set equally for all dimensions.
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Table 2: Forecasting results with TUCKER-CLUS (RMSE) for the PV Italy dataset,
considering different rank values and different training window sizes, and comparison with
other algorithms. Best results for each configuration are highlighted in bold.

PV Italy dataset Hourly
Window size (days)

Method 30 60 90 All
RMSE MAE RMSE MAE RMSE MAE RMSE MAE

AE-CLUS (Rank 3) 0.1591 0.0976 0.1573 0.0959 0.1579 0.0964 0.1505 0.0992
AE-CLUS (Rank 4) 0.1442 0.0928 0.1426 0.0919 0.1442 0.0927 0.1417 0.0945
AE-CLUS (Rank 5) 0.1497 0.0959 0.1505 0.0964 0.1556 0.0998 0.1396 0.0922
PCA-CLUS (Rank 3) 0.2902 0.2361 0.2864 0.2309 0.2860 0.2323 0.2478 0.1720
PCA-CLUS (Rank 4) 0.2883 0.2346 0.2793 0.2255 0.2783 0.2268 0.2457 0.1718
PCA-CLUS (Rank 5) NA NA NA NA NA NA NA NA
EMD-CLUS 0.2018 0.1622 0.2055 0.1684 0.2089 0.1736 0.2048 0.1748
TUCKER-CLUS (Rank 3) 0.0913 0.0535 0.0949 0.0562 0.0929 0.0552 0.1029 0.0623
TUCKER-CLUS (Rank 4) 0.0937 0.0548 0.0952 0.0566 0.0936 0.0556 0.1011 0.0607
TUCKER-CLUS (Rank 5) 0.0917 0.0539 0.0958 0.0568 0.0940 0.0557 0.1015 0.0614
LSTM (Full feature set) 0.2403 0.1881 0.2383 0.1852 0.2383 0.1852 0.2340 0.1818
CLUS (Full feature set) 0.1315 0.0807 0.1324 0.0807 0.1322 0.0807 0.1271 0.0838
ARIMA 0.1512 0.0928 0.1687 0.1029 0.2013 0.1229 0.2568 0.1693

PV Italy dataset Daily
Window size (days)

Method 30 60 90 All
RMSE MAE RMSE MAE RMSE MAE RMSE MAE

AE-CLUS (Rank 3) 0.0966 0.0605 0.1003 0.0637 0.1047 0.0677 0.1206 0.0821
AE-CLUS (Rank 4) 0.0854 0.0524 0.0875 0.0547 0.0925 0.0585 0.1152 0.0771
AE-CLUS (Rank 5) 0.0857 0.0524 0.0881 0.0546 0.0902 0.0566 0.1215 0.0829
PCA-CLUS (Rank 3) 0.1229 0.0784 0.1294 0.0838 0.1369 0.0896 0.1363 0.0914
PCA-CLUS (Rank 4) 0.1242 0.0791 0.1288 0.0835 0.1382 0.0903 0.1365 0.0901
PCA-CLUS (Rank 5) 0.1236 0.0786 0.1290 0.0837 0.1384 0.0905 0.1398 0.0927
EMD-CLUS 0.0974 0.0611 0.1032 0.0660 0.1111 0.0726 0.1226 0.0845
TUCKER-CLUS (Rank 3) 0.0872 0.0526 0.0900 0.0549 0.0878 0.0536 0.0942 0.0589
TUCKER-CLUS (Rank 4) 0.0888 0.0538 0.0892 0.0546 0.0887 0.0544 0.0946 0.0591
TUCKER-CLUS (Rank 5) 0.0870 0.0528 0.0867 0.0529 0.0897 0.0549 0.0950 0.0594

posing the signal in modes via EMD does not provide advantages in terms of
increased accuracy in the forecasting task, in the domain addressed in this
study. In fact, the predictive performance of EMD-CLUS models appear
sub-optimal compared to TUCKER-CLUS and other methods.

Additional considerations arise from Table 7, which shows the number of
winning configurations for all the methods considered. From this table (and
from Table 6) we can see that TUCKER-CLUS with rank=4 or 5 provides
the best results in terms of RMSE. Also this view of the results shows that
TUCKER-CLUS is the best performing method.

A summarized view of the number of features extracted and the obtained
reduction w.r.t. the complete feature set is shown in Table 8. Obviously,
a reduction is expected only in the Daily setting (in TUCKER-CLUS the
number of features depends on the rank). As for the Hourly setting, even if
there is no reduction in the number of features, the new features, obtained

24



Table 3: Forecasting results with TUCKER-CLUS (RMSE) for the Wind NREL dataset,
considering different rank values and different training window sizes, and comparison with
other algorithms. Best results for each configuration are highlighted in bold.

Wind NREL dataset Hourly
Window size (days)

Method 30 60 90 All
RMSE MAE RMSE MAE RMSE MAE RMSE MAE

AE-CLUS (Rank 3) 0.3512 0.2876 0.3570 0.2942 0.3630 0.3005 0.3627 0.3193
AE-CLUS (Rank 4) 0.3300 0.2654 0.3339 0.2685 0.3330 0.2675 0.3381 0.2790
AE-CLUS (Rank 5) 0.3409 0.2769 0.3417 0.2786 0.3459 0.2818 0.3546 0.2865
PCA-CLUS (Rank 3) 0.4366 0.3908 0.4490 0.4041 0.4622 0.4216 0.4706 0.4306
PCA-CLUS (Rank 4) 0.4347 0.3842 0.4471 0.3974 0.4604 0.4149 0.4688 0.4240
PCA-CLUS (Rank 5) NA NA NA NA NA NA NA NA
EMD-CLUS 0.3355 0.2919 0.3388 0.2996 0.3485 0.3104 0.3683 0.3366
TUCKER-CLUS (Rank 3) 0.3286 0.2778 0.3324 0.2825 0.3624 0.3114 0.3959 0.3446
TUCKER-CLUS (Rank 4) 0.3151 0.2638 0.3314 0.2811 0.3269 0.2756 0.3223 0.2712
TUCKER-CLUS (Rank 5) 0.3214 0.2714 0.3229 0.2731 0.3312 0.2825 0.3287 0.2777
LSTM (Full feature set) 0.4862 0.4374 0.4862 0.4374 0.4862 0.4374 0.4862 0.4374
CLUS (Full feature set) 0.3501 0.2867 0.3508 0.2891 0.3506 0.2903 0.3412 0.2816
ARIMA 0.3654 0.2992 0.4047 0.3336 0.4220 0.3494 0.4623 0.4070

Wind NREL dataset Daily
Window size (days)

Method 30 60 90 All
RMSE MAE RMSE MAE RMSE MAE RMSE MAE

AE-CLUS (Rank 3) 0.3089 0.2783 0.3066 0.2765 0.3146 0.2848 0.3581 0.3342
AE-CLUS (Rank 4) 0.3084 0.2778 0.3242 0.2931 0.3304 0.3004 0.3589 0.3348
AE-CLUS (Rank 5) 0.3070 0.2766 0.3162 0.2852 0.3199 0.2903 0.3414 0.3125
PCA-CLUS (Rank 3) 0.3440 0.3075 0.3633 0.3273 0.3779 0.3420 0.3948 0.3575
PCA-CLUS (Rank 4) 0.3426 0.3067 0.3628 0.3263 0.3817 0.3454 0.4027 0.3656
PCA-CLUS (Rank 5) 0.3419 0.3051 0.3589 0.3221 0.3788 0.3425 0.4087 0.3713
EMD-CLUS 0.3092 0.2804 0.3204 0.2921 0.3296 0.3016 0.3571 0.3324
TUCKER-CLUS (Rank 3) 0.2975 0.2597 0.3031 0.2670 0.3270 0.2910 0.3443 0.3082
TUCKER-CLUS (Rank 4) 0.2857 0.2490 0.2916 0.2549 0.2959 0.2592 0.2921 0.2557
TUCKER-CLUS (Rank 5) 0.2928 0.2555 0.2970 0.2597 0.2940 0.2586 0.2882 0.2528
LSTM (Full feature set) 0.3814 0.3192 0.3884 0.3263 0.3884 0.3263 0.3884 0.3263
CLUS (Full feature set) 0.3268 0.2945 0.3240 0.2922 0.3246 0.2939 0.3085 0.2880
ARIMA 0.3654 0.2992 0.4047 0.3336 0.4220 0.3494 0.4623 0.4070
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Table 4: Forecasting results with TUCKER-CLUS (RMSE) for the LightSource dataset,
considering different rank values and different training window sizes, and comparison with
other algorithms. Best results for each configuration are highlighted in bold.

LightSource dataset Hourly
Window size (days)

Method 30 60 90 All
RMSE MAE RMSE MAE RMSE MAE RMSE MAE

AE-CLUS (Rank 3) 0.1254 0.0814 0.1239 0.0797 0.1201 0.0781 0.1313 0.0900
AE-CLUS (Rank 4) 0.1195 0.0762 0.1178 0.0750 0.1189 0.0745 0.1230 0.0804
AE-CLUS (Rank 5) 0.1222 0.0782 0.1211 0.0776 0.1212 0.0774 0.1191 0.0770
PCA-CLUS (Rank 3) 0.2696 0.2061 0.2606 0.1960 0.2775 0.2103 0.2583 0.1943
PCA-CLUS (Rank 4) 0.2690 0.2091 0.2582 0.1966 0.2769 0.2110 0.2676 0.2072
PCA-CLUS (Rank 5) NA NA NA NA NA NA NA NA
EMD-CLUS 0.2356 0.1792 0.2440 0.1881 0.2466 0.1880 0.2575 0.1961
TUCKER-CLUS (Rank 3) 0.1223 0.0781 0.1278 0.0832 0.1319 0.0870 0.1205 0.0767
TUCKER-CLUS (Rank 4) 0.1209 0.0768 0.1169 0.0749 0.1196 0.0771 0.1139 0.0730
TUCKER-CLUS (Rank 5) 0.1196 0.0762 0.1161 0.0743 0.1225 0.0792 0.1203 0.0774
LSTM (Full feature set) 0.2403 0.1881 0.2383 0.1852 0.2383 0.1852 0.2340 0.1818
CLUS (Full feature set) 0.1219 0.0762 0.1185 0.0733 0.1197 0.0733 0.1145 0.0708
ARIMA 0.1596 0.1035 0.1729 0.1112 0.2284 0.1484 0.3734 0.2559

LightSource dataset Daily
Window size (days)

Method 30 60 90 All
RMSE MAE RMSE MAE RMSE MAE RMSE MAE

AE-CLUS (Rank 3) 0.1217 0.0811 0.1215 0.0826 0.1251 0.0859 0.1208 0.0774
AE-CLUS (Rank 4) 0.1220 0.0810 0.1221 0.0826 0.1244 0.0849 0.1188 0.0762
AE-CLUS (Rank 5) 0.1191 0.0792 0.1207 0.0814 0.1200 0.0811 0.1261 0.0827
PCA-CLUS (Rank 3) 0.1497 0.1000 0.1582 0.1079 0.1672 0.1156 0.1978 0.1353
PCA-CLUS (Rank 4) 0.1515 0.1014 0.1544 0.1051 0.1687 0.1167 0.1966 0.1343
PCA-CLUS (Rank 5) 0.1504 0.1006 0.1542 0.1050 0.1676 0.1159 0.1916 0.1308
EMD-CLUS NA NA NA NA NA NA NA NA
TUCKER-CLUS (Rank 3) 0.1273 0.0847 0.1204 0.0810 0.1244 0.0849 0.1183 0.0782
TUCKER-CLUS (Rank 4) 0.1198 0.0789 0.1146 0.0761 0.1173 0.0785 0.1174 0.0774
TUCKER-CLUS (Rank 5) 0.1172 0.0772 0.1132 0.0751 0.1210 0.0807 0.1119 0.0776
LSTM (Full feature set) 0.2291 0.1817 0.2291 0.1817 0.2291 0.1817 0.2291 0.1817
CLUS (Full feature set) 0.1115 0.0732 0.1112 0.0735 0.1159 0.0773 0.1122 0.0739
ARIMA 0.1596 0.1035 0.1729 0.1112 0.2284 0.1484 0.3734 0.2559

Table 5: p-values of the signed Wilcoxon rank tests for all pairwise combinations of meth-
ods. In bold statistically significant values (confidence=0.01, unless specified otherwise).

Pairwise comparison p-value winner
RMSE criterion
TUCKER-CLUS VS LSTM 1.66E-13 TUCKER-CLUS
TUCKER-CLUS VS ARIMA 1.66E-13 TUCKER-CLUS
TUCKER-CLUS VS CLUS 0.001204 TUCKER-CLUS
TUCKER-CLUS VS PCA-CLUS 1.66E-13 TUCKER-CLUS
TUCKER-CLUS VS AE-CLUS 3.44E-09 TUCKER-CLUS
TUCKER-CLUS VS EMD-CLUS 7.71E-13 TUCKER-CLUS

MDLP criterion
TUCKER-CLUS VS CLUS 2.88E-11 TUCKER-CLUS
TUCKER-CLUS VS PCA-CLUS 1.66E-13 TUCKER-CLUS
TUCKER-CLUS VS AE-CLUS 2.81E-08 TUCKER-CLUS
TUCKER-CLUS VS EMD-CLUS 1.96E-13 TUCKER-CLUS
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Table 6: RMSE reduction (%) with respect to ARIMA and MDLP improvement (%) with
respect to CLUS.

Method RMSE reduction MDLP improvement
w.r.t. ARIMA w.r.t. CLUS

LSTM 6.76%
CLUS 42.08%
PCA-CLUS (Rank 3) 8.54% -108.59%
PCA-CLUS (Rank 4) 8.67% -106.86%
PCA-CLUS (Rank 5) 9.50% -1.06%
AE-CLUS (Rank 3) 37.53% -8.08%
AE-CLUS (Rank 4) 40.09% 6.69%
AE-CLUS (Rank 5) 39.55% 0.03%
EMD-CLUS 28.44% -68.77%
TUCKER-CLUS (Rank 3) 43.18% 25.59%
TUCKER-CLUS (Rank 4) 46.25% 25.65%
TUCKER-CLUS (Rank 5) 46.15% 26.00%

Figure 8: Nemenyi test considering all datasets (RMSE criterion). The algorithms posi-
tioned at the rightmost side are the best performing.

Table 7: Number and percentage of winning configurations for all methods.

Method Rank 3 Rank 4 Rank 5 Overall
EMD-CLUS 0/24 (0.00%) 0/24 (0.00%) 0/24 (0.00%) 0/72 (0.00%)
AE-CLUS 0/24 (0.00%) 4/24 (16.66%) 1/24 (4.16%) 5/72 (6.9%)
PCA-CLUS 0/24 (0.00%) 0/24 (0.00%) 0/24 (0.00%) 0/72 (0.00%)
TUCKER-CLUS 10/24 (41.66%) 15/24 (65.50%) 17/24 (70.83%) 42/72 (58.33%)
ARIMA 0/24 (0.00%) 0/24 (0.00%) 0/24 (0.00%) 0/72 (0.00%)
LSTM 0/24 (0.00%) 0/24 (0.00%) 0/24 (0.00%) 0/72 (0.00%)
CLUS 14/24 (58.33%) 5/24 (20.83%) 6/24 (25%) 25/72 (34.72%)
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Table 8: Feature set size achieved with different rank values and achieved percentage of
reduction w.r.t. the initial feature set

PV Italy Initial Feature Set Size Extracted Feature Set Size
Rank 3 Rank 4 Rank 5

Hourly 15 12 (20.00%) 15 (0.00%) 18 (-20.00%)
Daily 193 9 (95.33%) 11 (94.30%) 13 (93.26%)

Wind NREL Initial Feature Set Size Extracted Feature Set Size
Rank 3 Rank 4 Rank 5

Hourly 12 12 (0.00%) 15 (-25.00%) 18 (-50.00%)
Daily 172 9 (94.76%) 11 (93.60%) 13 (92.44%)

LightSource Initial Feature Set Size Extracted Feature Set Size
Rank 3 Rank 4 Rank 5

Hourly 15 12 (20.00%) 15 (0.00%) 18 (-20.00%)
Daily 193 9 (95.33%) 11 (94.30%) 13 (93.26%)

Table 9: Distribution of prediction errors for all methods and datasets.

PV Italy Wind NREL LightSource
Method Mean Variance Mean Variance Mean Variance
LSTM -0.059 0.061 -0.122 0.120 -0.161 0.100
ARIMA 0.046 0.043 -0.044 0.251 0.035 0.039
CLUS 0.030 0.025 -0.172 0.116 -0.009 0.033
PCA-CLUS 0.011 0.046 -0.018 0.088 0.001 0.053
AE-CLUS 0.010 0.039 -0.020 0.074 -0.001 0.038
EMD-CLUS 0.004 0.033 0.001 0.131 -0.001 0.038
TUCKER-CLUS -0.009 0.028 -0.029 0.071 -0.008 0.030

after the Tucker decomposition, are as much as possible orthogonal and the
learning phase does not suffer from collinearity problems.

A better perspective on this aspect is provided by the results in terms of
the MLDP measure, which takes into account model complexity and error
reduction. In Table 5 we show the results of the signed-rank Wilcoxon test
for all pairwise comparisons of algorithms. As we can see, TUCKER-CLUS
always outperforms other methods, and the improvement is always statisti-
cally significant. This is also confirmed by the corrected Friedman with the
post-hoc Nemenyi test that we used to globally compare all the methods (see
Fig. 9).

By comparing the different values of the rank parameter (see Table 6), we
can see that the best results in terms of MDLP are obtained with rank=5,
although there is no clear difference among the three values.

Another aspect that is worth investigating is the distribution of the error
in the predictions. As we can see from Table 9, TUCKER-CLUS exhibits
very small variance in the errors compared to the other methods. This indi-
cates that TUCKER-CLUS does not only generate more accurate and simpler
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Figure 9: Nemenyi test considering all datasets (MDLP criterion). The algorithms posi-
tioned at the rightmost side are the best performing.

models, but also leads to more reliable and unbiased prediction models. A
more detailed analysis is shown in Fig. 10, 11 and 12. The error distribution
histograms reveal that, although all the methods show a Gaussian-like dis-
tribution of the error, TUCKER-CLUS presents a better balancing between
the two tails and a smaller dispersion.

In short, from the results, it is clear that considering any learning variant
(Hourly and Daily), any error measure (RMSE and MDLP) and any dataset,
TUCKER-CLUS is globally the best performing method in terms of accuracy,
simplicity and reliability of the prediction models.

Finally, Fig. 13 shows the average execution time required by all the
methods analyzed. Overall, it is possible to observe that TUCKER-CLUS
exhibits a higher running time than basic auto-regressive algorithms such as
ARIMA, but its execution time is comparable (see the running time for the
landmark window model) to that of other approaches, which do not reach
the same accuracy.
4.5. Availability

The system and the datasets are publicly available to replicate the experi-
ments at the following URL: http://www.di.uniba.it/~corizzo/tucker-clus/.

5. Conclusion

In this paper we have proposed a new renewable energy forecasting ap-
proach which exploits tensor factorization as a feature extraction technique.
Extracted features are used to learn predictive models for hour-by-hour one-
day-ahead energy produced by multiple renewable energy plants. The pro-
posed approach appears to be suited for the specific task in hand, mainly
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Figure 10: Error histograms for all methods - PV Italy dataset
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Figure 11: Error histograms for all methods - Wind NREL dataset
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Figure 12: Error histograms for all methods - LightSource dataset
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Figure 13: Average execution time in seconds of all methods for the Hourly (left) and
the Daily (right) variants. Results for AE-CLUS, PCA-CLUS and TUCKER-CLUS are
averaged over the different values of rank (3,4,5).

because of the multi-dimensional (or multi-way) nature of the data. Two
variants of the proposed approach have been investigated: the first aims at
generating features for predicting the energy produced at a specific hour, and
the second aims at generating features for predicting the hour-by-hour time
series of the energy produced on a specific day.

An extensive empirical evaluation has been performed on three renew-
able energy datasets which differ among each other in their size (number
of examples), the number of plants, the characteristics of the geographical
distribution of the plants, etc. The results obtained with the proposed ap-
proach have been compared with state-of-the-art algorithms, and statistical
tests have been performed to validate the comparisons between the different
methods. They show that the proposed approach globally outperforms com-
petitors in terms of accuracy, especially when predicting time series. The
reason is twofold: 1) a reduced set of features (i.e., a simpler model), with
the effect of reducing possible problems due to overfitting and 2) a mitigation
of the collinearity problem, with the result of increasing the effectiveness of
predictive models and reducing possible biases in the error distribution.

We identify two potential limitations of the proposed approach. One limi-
tation is the rank estimation problem in the Tucker decomposition. Since the
tensor decomposition is applied in an automated setting, a proper estimation
of the rank is important. In our experiments, we show that the performance
of the proposed method is rather stable with different rank values. Moreover,
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this aspect can be easily tackled by performing recurrently a grid search on
a plausible set of rank values over a restricted validation dataset of recent
observations.

Another potential limitation is the presence of noise in historical data
used in the tensor data model. In fact, it is possible that anomalies and
missing values could affect the ability of our method of extracting high-
quality features that are subsequently used to train machine learning models.
In our experiments, we had no evidence of this phenomenon, since our data
was not affected by such issues.

As future work, we will investigate these issues, and exploit distributed
approaches for tensor factorization in order to support the analysis of large-
scale streaming data in a cluster computing environment.
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