We discuss the problem of asymptotic stabilization of the hyper\-elastic-rod wave equation on the real line \begin{equation*} \partial_t u-\partial_{txx}^3 u+3u \partial_x u= \gamma\left(2\partial_x u\, \partial_{xx}^2 u+u\, \partial_{xxx}^3 u\right),\quad t > 0,\>\>x\in \mathbb{R}. \end{equation*} We consider the equation with an additional forcing term of the form $ f:H^1(\mathbb{R})\to H^{-1}(\mathbb{R}),\, f[u]=-\lambda(u-\partial_{xx}^2 u),$ % for some $\lambda>0$. We resume the results of \cite{AC} on the existence of a semigroup of global weak dissipative solutions of the corresponding closed-loop system defined for every initial data $u_0\in H^1(\mathbb{R})$. Any such solution decays exponentially to 0 as $t\to\infty$.

On the asymptotic stabilization of a generalized hyperelastic-rod wave equation

COCLITE, Giuseppe Maria
2014-01-01

Abstract

We discuss the problem of asymptotic stabilization of the hyper\-elastic-rod wave equation on the real line \begin{equation*} \partial_t u-\partial_{txx}^3 u+3u \partial_x u= \gamma\left(2\partial_x u\, \partial_{xx}^2 u+u\, \partial_{xxx}^3 u\right),\quad t > 0,\>\>x\in \mathbb{R}. \end{equation*} We consider the equation with an additional forcing term of the form $ f:H^1(\mathbb{R})\to H^{-1}(\mathbb{R}),\, f[u]=-\lambda(u-\partial_{xx}^2 u),$ % for some $\lambda>0$. We resume the results of \cite{AC} on the existence of a semigroup of global weak dissipative solutions of the corresponding closed-loop system defined for every initial data $u_0\in H^1(\mathbb{R})$. Any such solution decays exponentially to 0 as $t\to\infty$.
2014
10: 1-60133-017-0
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/34172
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact