Goji (Lycium barbarum L.) has recognized nutritive and antioxidant properties and many products are commercialized for health in food market. Besides its food use, goji has been the subject of more than 2000 years of traditional Chinese medicine, using berries, root bark, and leaves. Here, the potential of the liquid culture in temporary immersion system (TIS) by using the bioreactor Plantform™ was tested for the large-scale production of high-quality goji shoots and the subsequent production of total phenols and flavonoids. The three tested immersion cycles differently influenced the shoot quality in terms of proliferation and hyperhydricity. The best immersion cycle (time and frequency) was proven to have the shortest daily immersion time (6 min every 24 h) which ensured good levels of relative growth and multiplication rate, very limited onset of hyperydricity, and the longest shoots, promoting direct rooting after only 30 days of culture. In comparison with the semisolid culture, the TIS culture resulted in an increase of the total phenolic content (TPC) and in a lower value of the total flavonoid content (TFC). However, considering the higher quantity of biomass produced in the Plantform™ bioreactor, the difference in terms of TFC productivity between semisolid medium and TIS liquid culture was proven to be statistically equivalent.

Large-scale plant production of lycium barbarum l. By liquid culture in temporary immersion system and possible application to the synthesis of bioactive substance

Ruta C.;De Mastro G.
;
Tagarelli A.;De Cillis F.;
2020-01-01

Abstract

Goji (Lycium barbarum L.) has recognized nutritive and antioxidant properties and many products are commercialized for health in food market. Besides its food use, goji has been the subject of more than 2000 years of traditional Chinese medicine, using berries, root bark, and leaves. Here, the potential of the liquid culture in temporary immersion system (TIS) by using the bioreactor Plantform™ was tested for the large-scale production of high-quality goji shoots and the subsequent production of total phenols and flavonoids. The three tested immersion cycles differently influenced the shoot quality in terms of proliferation and hyperhydricity. The best immersion cycle (time and frequency) was proven to have the shortest daily immersion time (6 min every 24 h) which ensured good levels of relative growth and multiplication rate, very limited onset of hyperydricity, and the longest shoots, promoting direct rooting after only 30 days of culture. In comparison with the semisolid culture, the TIS culture resulted in an increase of the total phenolic content (TPC) and in a lower value of the total flavonoid content (TFC). However, considering the higher quantity of biomass produced in the Plantform™ bioreactor, the difference in terms of TFC productivity between semisolid medium and TIS liquid culture was proven to be statistically equivalent.
File in questo prodotto:
File Dimensione Formato  
plants-09-00844.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.67 MB
Formato Adobe PDF
1.67 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/315665
Citazioni
  • ???jsp.display-item.citation.pmc??? 6
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 23
social impact