Saliency detection is a very active area in computer vision. When hyperspectral images are analyzed, a big amount of data need to be processed. Hence, dimensionality reduction techniques are used to highlight salient pixels allowing us to neglect redundant features. We propose a bottom-up approach based on two main ingredients: sparse non negative matrix factorization (SNMF) and spatial and spectral distances between the input image and the reconstructed one. In particular, we use both well known and novel distance functions. The method is validated on both hyperspectral and multispectral images.

Saliency Detection for Hyperspectral Images via Sparse-Non Negative-Matrix-Factorization and novel Distance Measures

Falini A.
;
Tamborrino C.;Mazzia F.;Mininni R. M.;Appice A.;Malerba D.
2020-01-01

Abstract

Saliency detection is a very active area in computer vision. When hyperspectral images are analyzed, a big amount of data need to be processed. Hence, dimensionality reduction techniques are used to highlight salient pixels allowing us to neglect redundant features. We propose a bottom-up approach based on two main ingredients: sparse non negative matrix factorization (SNMF) and spatial and spectral distances between the input image and the reconstructed one. In particular, we use both well known and novel distance functions. The method is validated on both hyperspectral and multispectral images.
2020
978-1-7281-4384-2
File in questo prodotto:
File Dimensione Formato  
SaliencyNNMF.pdf

non disponibili

Tipologia: Documento in Pre-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.54 MB
Formato Adobe PDF
2.54 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/313177
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 7
social impact